Development and Usage of Short Term Signals in Order Execution

Michael G Sotiropoulos
Algorithmic Trading Quantitative Research
Bank of America Merrill Lynch

Cornell Financial Engineering Seminar
New York, 10-Oct-2012
Signals: Concepts and Terminology

Agents: investors (institutional, retail), market makers and brokers
Process: continuous quoting and trading inside two-sided, electronic limit order books
Outcome: price discovery

Trading always involves costs.

- Explicit costs are commissions, bid-ask spread, foreign exchange fees, etc.
- Implicit costs are price impact, adverse selection and opportunity cost.

- Aggressive (market) orders pay up-front the spread cost in exchange for controlling the execution time.
- Aggressive orders deplete the order book and generate price impact.
- Passive (limit) orders reveal information and are subject to adverse selection.
- Passive orders gain up-front the spread, at the risk of been left unfilled.

Algorithmic trading research focuses on measuring and modeling costs, as well as optimally controlling the discretionary variables of trading.
Signals: Definitions and Types (I)

A trading signal is a combination of two components:

1. An **indicator function** $I(t, O_t, \ldots O_{t-h}; \theta)$.
 It depends on current and lagged market observables $O_t \ldots O_{t-h}$, and on model specific parameters θ.
 The purpose of the indicator is to compute some dynamic aspect of the market, and return a short term forecast.

2. A **response function** $R(I_t, X_t; \phi)$.
 It depends on the indicator I_t, the current state of the order X_t and strategy parameters ϕ.
 The purpose of the response function is to generate a trading action.

Possible actions are:

- Increase/decrease the quantity of a limit order
- Update the price of a limit order
- Cross the spread
- Cancel a limit order and wait out until further updates
- Reallocate the posted quantities among trading venues (exchanges, dark pools)

Indicator + Response \rightarrow Adaptive Algorithm
Signals: Definitions and Types (II)

Common Indicator Types:

1. **Trade autocorrelation**: trade signs are correlated within a short time scale → predictable trade direction

2. **Order imbalance**: the LOB may be too heavy on one side → predictable mid-price movement

3. **Momentum/reversion**: the price path exhibits strong trend → bet on the trend persisting or reverting

4. **Relative value**: the traded asset is cointegrated with a sector index or another asset → predictable spread movement

5. **News/Events**: the market reaction to unexpected news has a stable pattern → predictable post-event volume/volatility/alpha

6. **Volume clustering**: recent spike in trading volume is expected to create more spikes over a short horizon → predictable increase in next bucket volume

7. **Venue liquidity**: higher probability to get filled on a specific venue due to hidden volume, popularity for certain assets, fee structure, etc. → optimal routing
Signals: Real Value

Note:

- Trading signals are short lived and opportunistic (i.e. unstable in time).
- Technical indicators are the longer horizon relatives of the trading signals considered here.

Do trading signals add real value?

- In a perfectly liquid and efficient market: no.
 Prices are martingales and the best forecast for the future is the present state.
 Signals are simply white noise.

- In theoretical models for illiquid markets: maybe.
 Most signals are either due to market microstructure noise, or they are priced in the order flow.

- In real markets: yes.
 Provided that the signal is correctly identified, properly calibrated and periodically reviewed for validity.
Order Flow Models and Signals: Model Types (I)

Quantitative models for high frequency trading summarize a subset of market dynamics in a mathematical framework.

Models can be classified as:

1. **Microscopic**: sequential trading, strategic trading
 - model agent interactions (informed/noise trader, market maker)
 - optimize individual agent objectives
 - derive market clearing prices

 Examples: Roll ’84, Glosten-Milgrom ’85, Kyle ’85, MRR ’97, and more ...

2. **Macroscopic**: impact function, decay kernels
 - average over agent behavior (effective theories)
 - parametrize aggregate cost effects with simple functional forms
 - maintain the constraint of efficient markets

 Examples: zero intelligence (Smith-Farmer ’02), power law impact (Bouchaud et al. ’08)

- Macroscopic models are used to generate the target schedule of a large order.
- Trading signals are used to **opportunistically deviate** from the target schedule.
- Microscopic models allow us to distinguish between microstructure noise and genuine information.
A simple microstructure model with autocorrelated order flow and minimal strategic trading is the MRR model (Madhavan, Richardson, Roomans 1997).

Assumptions:

1. All market orders have the same quantity.

2. The trade signs follow an AR(1) Markov process, i.e.

\[
E(\epsilon_i|\epsilon_{i-1}, \epsilon_{i-2}, \ldots) = \rho \epsilon_{i-1}.
\] (1)

The lag-1 autocorrelation of trade signs decays exponentially as

\[
C_l := E(\epsilon_i \epsilon_{i+l}) = \rho^l.
\] (2)

3. The fundamental price is affected by the external shock \(\xi_i\) (news) and by the trade sign surprise \(\epsilon_i - \rho \epsilon_{i-1}\) as

\[
p_{i+1} = p_i + \xi_i + \theta (\epsilon_i - \rho \epsilon_{i-1}),
\] (3)

with \(\theta\) the coefficient of price impact.

Trading mechanics: the prevailing bid and ask prices \(b_i, a_i\) are valid in the interval \([t_{i-1}, t_i)\). They get updated immediately after the arrival of trade \(i\).
Order Flow Models and Signals: Example: MRR (II)

What is a market maker to do before trade i happens?
Set bid-ask prices so that there is no ex-post regret

$$b_i = p_i + \theta (-1 - \rho \epsilon_{i-1}) - c, \quad a_i = p_i + \theta (1 - \rho \epsilon_{i-1}) + c. \quad (4)$$

- The spread has a price impact component and a fixed/inventory cost component

$$s = a_i - b_i = 2(\theta + c). \quad (5)$$

- The mid price is the fundamental price corrected by the expected impact

$$m_i = (a_i + b_i)/2 = p_i - \theta \rho \epsilon_{i-1}. \quad (6)$$

- After trade i happens the mid price moves to

$$m_{i+1} = m_i + p_{i+1} - p_i - \theta \rho (\epsilon_i - \epsilon_{i-1}) = m_i + \xi_i + \theta (1 - \rho) \epsilon_i. \quad (7)$$

- After l trades have taken place

$$m_{i+l} = m_i + \sum_{j=i}^{i+l-1} \xi_j + \theta (1 - \rho) \sum_{j=i}^{i+l-1} \epsilon_j. \quad (8)$$
Order Flow Models and Signals: Example: MRR (III)

Define the impact function at lag l as (Wyart, et al. 2008)

$$\mathcal{R}_l := \mathbb{E} (\epsilon_i (m_{l+i} - m_i)). \quad (9)$$

- \mathcal{R}_l measures the mid-price impact of trade i over a horizon of l time steps.
- It is easily computed from eq. (8) as

$$\mathcal{R}_l = \theta \left(1 - \rho^l\right). \quad (10)$$

- For $\rho > 0$ (the case in practice), the impact increases from $\mathcal{R}_1 = \theta (1 - \rho)$ to $\mathcal{R}_\infty = \theta$.

Conclusions:

1. Positive correlation among trade signs leads to increased long term impact

$$\mathcal{R}_\infty = \frac{1}{1 - C_1} \mathcal{R}_1. \quad (11)$$

2. The spread is a linear function of the long term impact

$$s = 2\theta + 2c = 2\mathcal{R}_\infty + 2c. \quad (12)$$

3. In the absence of price drift (alpha) the long term impact cost (\mathcal{R}_∞) of market and limit orders is the same (order duality).
 The long term total cost of market and limit orders differs only by the fixed spread cost $2c$.

Order Flow Models and Signals: Lessons

Models provide a healthy criticism about signals because:

- Microstructure models generate transaction prices that are not martingales.
- Deviation from martingale behavior does not necessarily lead to a meaningful signal. For example:
 - Negative autocorrelation of trade prices in the Roll ’84 model is due to bid-ask bounce
 - Positive autocorrelation of trade signs in the MRR ’97 model cannot be exploited, it is priced in the order flow

To develop meaningful signals we need to:

1. Check the underlying dynamics that motivate the indicator.
2. Calibrate the indicator parameters and time window.
3. Tune the response function via back-testing or randomized testing.
Having chosen a market observable O_t, how far back do we look to construct the indicator I_t?

Approximating the LOB as a simple queue with constant service rate, we define the **queue time** as the average time it takes to move the mid-quote price by depleting the bid or the ask side

$$\tau_q := \frac{\text{AvgBidSize} + \text{AvgAskSize}}{\text{AvgTrdSize}}.$$ \hspace{1cm} (13)

- Long queue stocks have thick LOBs relative to the typical trade size.
- The spread (tick size) of long queue stocks is large relative to the stock price, so limit orders pile up at the top of the book.
- Short queue stocks are typically liquid, with the top of the book updating quickly.

NOTE: the units of τ_q is number of trades (tick time, not clock time).
The time window used to construct an indicator may be defined as:

1. The queue time translated into wall clock units (with some zoom factor z)

$$\tau_w = \max \left(\tau_f, \min \left(\tau_c, z \frac{T_{day}}{N_{trd}} \tau_q \right) \right) ,$$

(14)

2. The time interval that contains on average n number of trades

$$\tilde{\tau}_w = \max \left(\tau_f, \min \left(\tau_c, \frac{T_{day}}{N_{trd}} n \right) \right) ,$$

(15)

where

τ_f, τ_c user-specified floor and cap

T_{day} time length of the continuous trading session

N_{trd} average number of trades per day

The quantity N_{trd} / T_{day} is the market average speed of trading.
Signal Examples: Time Scales and Weights (III)

Distribution of WndQSize (window size with τ_q trades on average) and WndSize (window size with 16 trades on average) for S&P 500 stocks.

- Each time is an average across all trading days in October 2011
- Configuration: $\tau_f = 1$ sec, $\tau_c = 3$ mins

- WndQSize outliers: TLAB (4.5 mins), WPO (3.5 mins)
- WndSize outliers: WPO (23 mins), GAS (3.4 mins)
Signal Examples: Time Scales and Weights (IV)

Same distributions for Russell 3000 stocks.

- Each bar is 60 secs wide
- The cap is 3 mins

- Proportion of stocks that hit the WndQSize cap: $44/2941 = 1.5\%$
- Proportion of stocks that hit the WndSize cap: $215/2941 = 7.3\%$
Signal Examples: Time Scales and Weights (V)

Within τ_w we use exponential moving averages (EMA) for the lagged observations.

The standard definition of the EMA M_t of a quantity O_t is

$$M_t = aO_t + (1 - a) M_{t-1}$$

(16)

The coefficient a, between 0 and 1, is called the “smoothing factor” (bad name).

- $a \rightarrow 1$ the EMA discounts the past and tracks the present more closely.
- $a \rightarrow 0$ the EMA discounts the present and it is smoother.
- The EMA is 86% determined by the last $(2/a)$ observations.

Define an exponentially weighted time distance between trades at t_{i-1} and t_i

$$w_i = e^{-(t_i-t_{i-1})/\tau_w}$$

(17)

Define the smoothing factor at trade time t_i as

$$a_i = 1 - w_i = 1 - e^{-\Delta t_i/\tau_w}.$$

(18)

Assuming that trades arrive at a constant speed N_{trd}/T_{day} then $\Delta t_i \approx T_{day}/N_{trd}$ and from eq. (14),

$$a \approx 1 - e^{-1/\tau_q}.$$

(19)

For $\tau_q \gg 1$ the smoothing factor becomes

$$a \approx \frac{1}{\tau_q},$$

(20)

i.e. the indicator is determined by the last $2\tau_q$ trades.
Signal Examples: Trade Sign Autocorrelation (I)

- This signal exploits the persistence of the order flow.

Why is it expected to work?

- Use the Lee-Ready algorithm to sign the trades on the tape (1: BUY, -1: SELL)
- Compute the autocorrelation function (ACF), i.e. the correlation between
 - every trade sign and the next trade sign (lag = 1)
 - every trade sign and the sign two trades after (lag = 2)
 - every trade sign and the sign h trades after (lag = h)

If trade signs arrive independently the ACF for all lags (except lag 0) should have a mean of zero.
Signal Examples: Trade Sign Autocorrelation (II)

Log-log plot of the autocorrelation of trade signs (using the Lee-Ready algorithm for signing trades). Note the strong autocorrelation for a significant number of lags.

- Primary reason is order splitting (Tóth, et al. 2011).
- Power law decay $\rho \propto h^{-\gamma}$, with $\gamma = 0.50$ (MSFT) and $\gamma = 0.65$ (BEAM).
Signal Examples: Trade Sign Autocorrelation (III)

Calculation of the signal (Almgren 2006)

1. For each trade define its “askness” \(a \) and “bidness” \(b \) as the distance of the transaction price from the bid (res. ask) in units of spread

\[
\begin{align*}
 a &= \min \left(\left(\frac{P - P_b}{P_a - P_b} \right)^+, 1 \right) ; \quad b = \min \left(\left(\frac{P_a - P}{P_a - P_b} \right)^+, 1 \right).
\end{align*}
\]

(21)

By construction, \(a + b = 1 \). A trade that hits the ask side (BUY) has \(a = 1, \ b = 0 \).

2. At each trade time \(t_n \) compute the moving average of askness and bidness over a window of size \(\tilde{\tau}_w \) as

\[
\begin{align*}
 A_n &= \frac{1}{\tilde{\tau}_w} a_n + w_n A_{n-1} ; \quad B_n = \frac{1}{\tilde{\tau}_w} b_n + w_n B_{n-1},
\end{align*}
\]

(22)

with exponentially decaying weights \(w_n = e^{- (t_n - t_{n-1}) / \tilde{\tau}_w} \).

3. Normalize the moving averages by half the average trading speed

\[
\begin{align*}
 \bar{A}_n &= \frac{2A_n}{N_{trd} / T_{day}} , \quad \bar{B}_n = \frac{2B_n}{N_{trd} / T_{day}}
\end{align*}
\]

(23)

An algorithm that tries to minimize impact cost will use the signal as follows:

- For a BUY (SELL) order trade faster when \(\bar{B}_n (\bar{A}_n) \) is higher.
Signal Examples: Trade Sign Autocorrelation (IV)

What does the signal mean?

- If the order flow was balanced within the window τ_w, then $\bar{A}_n \approx \bar{B}_n \approx 1$. Half of the trades on average should be BUY and half SELL.
- If we are posted on the bid side and \bar{B} is high, there is a lot of SELL market orders, so we should increase our participation rate (response function in the trading system).

This is one of the signals used by the BAML Instinct® algorithm.
Signal Examples: Trade Sign Autocorrelation (V)

A real order:

<table>
<thead>
<tr>
<th>Algo</th>
<th>BAML Instinct®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>STT</td>
</tr>
<tr>
<td>Side</td>
<td>SELL</td>
</tr>
<tr>
<td>TargetPct</td>
<td>20%</td>
</tr>
<tr>
<td>IvIReturn</td>
<td>15.4 bps</td>
</tr>
<tr>
<td>Slippage</td>
<td>-6.2 bps</td>
</tr>
</tbody>
</table>

Px

<table>
<thead>
<tr>
<th>13:51</th>
<th>13:53</th>
<th>13:56</th>
<th>13:58</th>
<th>14:00</th>
<th>14:02</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.80</td>
<td>38.86</td>
<td>38.92</td>
<td>38.99</td>
<td>39.05</td>
<td>39.05</td>
</tr>
</tbody>
</table>

Vlm (1000s)

<table>
<thead>
<tr>
<th>13:51</th>
<th>13:53</th>
<th>13:56</th>
<th>13:58</th>
<th>14:00</th>
<th>14:02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>3.8</td>
<td>7.2</td>
<td>10.6</td>
<td>14.1</td>
<td></td>
</tr>
</tbody>
</table>

Total Vlm Instinct Signal

<table>
<thead>
<tr>
<th>13:51</th>
<th>13:53</th>
<th>13:56</th>
<th>13:58</th>
<th>14:00</th>
<th>14:02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.81</td>
<td>1.63</td>
<td>2.44</td>
<td>3.25</td>
<td></td>
</tr>
</tbody>
</table>

Target %

<table>
<thead>
<tr>
<th>13:51</th>
<th>13:53</th>
<th>13:56</th>
<th>13:58</th>
<th>14:00</th>
<th>14:02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>7.3</td>
<td>14.7</td>
<td>22.0</td>
<td>29.4</td>
<td></td>
</tr>
</tbody>
</table>

Realized %

<table>
<thead>
<tr>
<th>13:51</th>
<th>13:53</th>
<th>13:56</th>
<th>13:58</th>
<th>14:00</th>
<th>14:02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Signal Examples: Order Imbalance (I)

Replace the mid-quote by a price that takes into account the imbalance between bid and ask sizes

Microprice: a LOB imbalance signal defined as a “center of mass” price within the spread

\[
P_{\text{micro}} := P_b \frac{Q_a}{Q_b + Q_a} + P_a \frac{Q_b}{Q_b + Q_a}.
\]

(24)

Response function:

- Buy order: cross the spread when \(P_{\text{micro}} > P_a - k (P_a - P_b) \).
- Sell order: cross the spread when \(P_{\text{micro}} < P_b + k (P_a - P_b) \).

Tune \(k \) based on empirical studies of order performance.
Signal Examples: Order Imbalance (II)

Joint evolution of the NBBO and the MicroPrice for MSFT and BEAM.

- Notice how MicroPrice anticipates the shift of the NBBO level for MSFT (less clear for BEAM).
Signal Examples: Order Imbalance (III)

MicroPrice crossing is a horizontal feature of the BAML limit order model. It triggers opportunistic spread crossing of the child order.

Note:

- MicroPrice-like state variables can determine the probability of up-down move of the next price innovation in Markov models for the LOB (Cont, de Larrard 2012).
- Spread crossing is costly. The cut-off must be carefully calibrated.
- Latency effects may significantly reduce the benefit of an order imbalance indicator (Stoikov, Waeber 2012).
Signal Examples: Intraday News (I)

Facts:
- Corporate and macro news affect intraday trading volume and volatility.
- Regularly scheduled releases (earnings, FOMC meetings) are considered “special days” and trading systems load special day statistics.
- The problem is to assess and react to unscheduled news intraday.

Methodology:
- Use linguistic analysis to interpret and score news items, i.e. map them to numerical indicators
- Define a meaningful and robust scoring system
- Create a real-time feed that provides the stream of scores to the trading engines

 Providers:
- News feeds scoring and distribution is a fast maturing industry
- Main providers: Thomson Reuters, Bloomberg, Dow Jones
Signal Examples: Intraday News (II)
Example from Thomson Reuters.

Some of the indicators provided by the feed are

1. Item type (article, alert, append)
2. Relevance (between 0 and 1)
3. Sentiment (±1)
4. Positive/Neutral/Negative weight (the three weights sum up to 1)
Signal Examples: Intraday News (III)

To assess the impact of news on trading volume we compute a given day’s news-conditional volume as (Gross-Klussmann, Hautsch 2009)

\[TV'_{m,k} = \frac{\sum_{i \in k} V_i P_i}{\sum_{i \in k} P_i} \]

and its historical \(D \)-day average as

\[\hat{T}V_{m,k} = \left(\sum_{j=d-D}^{d-1} TV_{m,k,j} \right) / D \]

where

- \(m \) news item
- \(k \) the \(k \)-th time interval of fixed size \(\Delta T \) after the arrival of news item \(m \)
- \(V_i, P_i \) the volume and price of trade \(i \) within interval \(k \)
- \(d \) the day index

Finally, the normalized news-conditional volume is computed as

\[TV_{m,k} = \frac{TV'_{m,k}}{\hat{T}V_{m,k}} \]
Signal Examples: Intraday News (IV)

Below we plot the normalized conditional volume averaged over all news items as a function of the time interval. The sample contains:

- Time period: Jan-Jun 2011
- Stock universe: FTSE 100 and FTSE ALL SHARE
- News type: ALERT or ARTICLE
- News relevance: REL = 1
- Sentiment: POS > 0.85 or NEG > 0.85

FTSE 100 on the left and FTSE ALL SHARE on the right
Signal Examples: Intraday News (V)

Intraday volume responds to news arrival as follows:

- It peaks at 1.5 the historical value around news arrival
- The peak has a t-test score of 2 (it is significant)
- The peak is not a jump, it has a 10 min width on either side, with a longer right tail (insiders?)
- The total daily and closing auction volumes seem unaffected by intraday news; news create a redistribution effect

Practical benefits:

- Integrate the news feed indicators with the real-time volume prediction model
- Calibrate the response to news relative to the default prediction model.
- Repeat exercise for volatility

So far we have found no significant link between news arrival and price movement (short-term alpha).
Summary: Usage in Trading Systems

Coarse-grained view of an algorithmic trading stack

- Order
 - AlgoChooser
 - Historical Statistics
 - Impact Model
 - Scheduler
 - Historical and Real Time Statistics
 - Impact Model
 - Slicer
 - Trading Signals (Imbalance, Autocorrelation, ...)
 - Router
 - Order Book Statistics
- Markets
Summary: Conclusions

- Signals are used extensively by execution service providers and high frequency firms, although the objectives and risk preferences may differ.
- Implementation and validation of short-term signals is a non-trivial task.
- Backtesting is valuable, but continuous monitoring and tuning is even more important.
- Weighted mixtures of signals, or “super-signals”, can be useful in markets with frequent regime changes.
References

All statements in this presentation are the author’s personal views and not necessarily those of Bank of America Merrill Lynch.