Implied Volatility of Leveraged ETF Options

Tim Leung

IEOR Dept.
Columbia University

joint work with Ronnie Sircar (Princeton)

Cornell Financial Engineering Seminar
Feb. 6, 2013
Leveraged Exchange Traded Funds (LETFs) promise a fixed leverage ratio with respect to a given underlying asset or index.

Most typical leverage ratios are: (long) $1, 2, 3$, and (short) $-1, -2, -3$.

Significant rise in the use of (L)ETFs and their options in the past decade.

In 2012, total notional on ETF options is $40-50$ bil, as compared to 90 bil for S&P 500 index options.

ETF options across 4 asset classes: equity, debt, commodity, and currency.

85% of the total ETF options volume is traded among only four ETFs: SPY (S&P 500), IWM (Russell 2000), QQQ (Nasdaq 100) and GLD (gold).
Empirical LEFT Prices

Figure: SSO and SDS cumulative returns from Dec 2010 to Nov 2011. Observe that both SSO and SDS can give negative returns simultaneously over several periods in time.
Figure: 1-day (left), 2-week (mid) and 2-month (right) returns of SPY against SSO (top) and SDS (bottom), in logarithmic scale. We considered 1-day, 2-week and 2-month rolling periods from Sept 29, 2010 to Sept 30, 2012.
Figure: 1-day (left), 2-week (mid) and 2-month (right) returns of SPY against UPRO (top) and SPXU (bottom), in logarithmic scale. We considered 1-day, 2-week and 2-month rolling periods from Sept 29, 2010 to Sept 30, 2012.
LETF Price Dynamics in the Black-Scholes Model

- Under the unique risk-neutral measure \mathbb{P}^*, the reference asset price follows:

$$\frac{dX_t}{X_t} = r\ dt + \sigma\ dW^*,$$

with constant interest rate r and constant volatility σ.

- A long LETF L on X with leverage ratio $\beta \geq 1$ is constructed by
 - investing the amount βL_t (β times the fund value) in X,
 - borrowing the amount $(\beta - 1)L_t$ at the risk-free rate r,
 - expense charge at rate c.

- For a short ($\beta \leq -1$) LETF, $|\beta|L_t$ is shorted on X, and $(1 - \beta)L_t$ is kept in the money market account.

- The LETF price dynamics:

$$\frac{dL_t}{L_t} = \beta \left(\frac{dX_t}{X_t} \right) - ((\beta - 1)r + c)\ dt$$

$$= (r - c)\ dt + \beta \sigma\ dW^*_t.$$
The LETF value L can be written in terms of X:

$$\frac{L_t}{L_0} = \left(\frac{X_t}{X_0} \right)^\beta e^{-(r(\beta-1)+c)t - \frac{\beta(\beta-1)}{2} \sigma^2 t}.$$

Over longer times, the volatility will lead to significant attrition in fund value, even if the underlying is performing well.

The no-arbitrage price a European call option on L is:

$$C^{(\beta)}_{BS}(t, L; K, T) = e^{-r(T-t)} \mathbb{E}^*\{(L_T - K)^+ | L_t = L\} = C_{BS}(t, L; K, T, r, c, |\beta|\sigma),$$

where $C_{BS}(t, L; K, T, r, c, \sigma)$ is the Black-Scholes formula for a call.
Implied Volatility (IV) of LETF Options

- Given the market price C^{obs} of a call on L, the implied volatility is given by

$$I^{(\beta)}(K, T) = (C_{BS}^{(\beta)})^{-1}(C^{\text{obs}}) = \frac{1}{|\beta|}C_{BS}^{-1}(C^{\text{obs}}).$$

- We normalize by the $|\beta|^{-1}$ factor in our definition of implied volatility so that they remain on the same scale.

Proposition

The slope of the implied volatility curve admits the bound:

$$-\frac{e^{-(r-c)(T-t)}}{|\beta|L\sqrt{T-t}} \frac{1 - N(d_2^{(\beta)})}{N'(d_1^{(\beta)})} \leq \frac{\partial I^{(\beta)}(K)}{\partial K} \leq \frac{e^{-(r-c)(T-t)}}{|\beta|L\sqrt{T-t}} \frac{N(d_2^{(\beta)})}{N'(d_1^{(\beta)})},$$

where $d_2^{(\beta)} = d_1^{(\beta)} - |\beta|I^{(\beta)}(K)\sqrt{T-t}$, with $\sigma = I^{(\beta)}(K)$.
Empirical Implied Volatilities – SPX, SPY

Figure: SPX (blue cross) and SPY (red circles) implied volatilities on Sept 1, 2010 for different maturities (from 17 to 472 days) plotted against log-moneyness:

$$LM = \log \left(\frac{\text{strike}}{(L)\text{ETF price}} \right).$$
Empirical Implied Volatilities – SPY, SSO

Figure: SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness.
Empirical Implied Volatilities – SPY, SSO

Figure: SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness.
Empirical Implied Volatilities – SPY, SSO

Figure: [Left] SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness. [Right] SSO:SPY implied volatility ratios for different maturities.
Figure: SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness (LM) for increasing maturities.
Empirical Implied Volatilities – SPY, SDS

Figure: *SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness (LM) for increasing maturities.*
Empirical Implied Volatilities – SPY, SDS

Figure: [Left] SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness. [Right] SDS:SPY implied volatility ratios for different maturities.
Observations

- The most salient features of the empirical implied volatilities:
 - IV skew for SSO appears to be flatter than that for SPY,
 - IV skew is upward sloping for SDS, and downward sloping for SPY and SSO.
- Also, intuitively,
 - a put on a long-LETF and a call on a short-LETF are both bearish,
 - IVs should be higher for smaller (larger) LM for long (short) LETF.

- Traditionally, IV is used to compare option contracts across strikes & maturities. What about across leverage ratios?
- Which pair of LETF options should have comparable IV?
Observations

- The most salient features of the empirical implied volatilities:
 - IV skew for SSO appears to be flatter than that for SPY,
 - IV skew is upward sloping for SDS, and downward sloping for SPY and SSO.

- Also, intuitively,
 - a put on a long-LETF and a call on a short-LETF are both bearish,
 - IVs should be higher for smaller (larger) LM for long (short) LETF.

- Traditionally, IV is used to compare option contracts across strikes & maturities. What about *across leverage ratios*?
- Which pair of LETF options should have comparable IV?
Multiscale Stochastic Volatility Framework

We assume that the reference index X, the LETF L, fast volatility factor Y and slow volatility factor Z are described by the system of SDEs:

\[
\begin{align*}
 dX_t &= rX_t \, dt + f(Y_t, Z_t)X_t \, dW_t^{(0)} \\
 dL_t &= (r - c)L_t \, dt + \beta f(Y_t, Z_t)L_t \, dW_t^{(0)} \\
 dY_t &= \left(\frac{1}{\varepsilon} \alpha(Y_t) - \frac{1}{\sqrt{\varepsilon}} \eta(Y_t)\Lambda_1(Y_t, Z_t) \right) \, dt + \frac{1}{\sqrt{\varepsilon}} \eta(Y_t) \, dW_t^{(1)} \\
 dZ_t &= \left(\delta \ell(Z_t) - \sqrt{\delta} \, g(Z_t)\Lambda_2(Y_t, Z_t) \right) \, dt + \sqrt{\delta} \, g(Z_t) \, dW_t^{(2)} .
\end{align*}
\]

Here, the standard \mathcal{B}^\star-Brownian motions $(W^{(0)}\!, W^{(1)}\!, W^{(2)}\!)$ are correlated:

\[
\begin{align*}
 d\langle W^{(0)}, W^{(1)} \rangle_t &= \rho_1 \, dt, \\
 d\langle W^{(0)}, W^{(2)} \rangle_t &= \rho_2 \, dt, \\
 d\langle W^{(1)}, W^{(2)} \rangle_t &= \rho_{12} \, dt ,
\end{align*}
\]

where $|\rho_1|, |\rho_2|, |\rho_{12}| < 1$, and $1 + 2\rho_1\rho_2\rho_{12} - \rho_1^2 - \rho_2^2 - \rho_{12}^2 > 0$.

We call $\Lambda_1(y, z)$ and $\Lambda_2(y, z)$ the market prices of volatility risk.
ETF Option Price Approximation

The no arbitrage price of a European option on X is given by

$$P^{\varepsilon, \delta}(t, X_t, Y_t, Z_t) = I E^* \left\{ e^{-r(T-t)} h(X_T) \mid X_t, Y_t, Z_t \right\}.$$

Instead of solving the high-dim PDE, we apply the perturbation theory, as discussed in Fouque et al. (2011), to simplify and study the calibration problem.

Proposition

For fixed (t, x, y, z), the European option price $P^{\varepsilon, \delta}(t, x, y, z)$ is approximated by $P^(t, x, z)$, where*

$$P^* = P_{BS}^* + \left\{ \tau V_0^\delta + \tau V_1^\delta \left(x \frac{\partial}{\partial x} \right) + \frac{V_3^\varepsilon}{\sigma^*} \left(x \frac{\partial}{\partial x} \right) \right\} \frac{\partial P_{BS}^*}{\partial \sigma},$$

and the order of accuracy is given by

$$P^{\varepsilon, \delta} = P^* + O(\varepsilon \log |\varepsilon| + \delta).$$

Here, P_{BS}^ is the Black-Scholes call price with time-to-maturity $\tau = T - t$ and the corrected volatility parameter σ^*.*
ETF Implied Volatility Approximation

- Using the price approximation, we can derive the 1st-order approximation for the IV.
- To do so, we define the variable *Log-Moneyness to Maturity Ratio* by

\[
\text{LMMR} = \frac{\log(K/x)}{\tau}.
\]

Proposition

The 1st-order approximation for the IV is given by

\[
I = b^* + \tau b^\delta + (a^\varepsilon + \tau a^\delta) \text{LMMR} + \mathcal{O}(\varepsilon \log |\varepsilon| + \delta),
\]

where \((b^*, b^\delta, a^\varepsilon, a^\delta)\) are defined by

\[
\begin{align*}
b^* &= \sigma^* + \frac{V_3^\varepsilon}{2\sigma^*} \left(1 - \frac{2r}{\sigma^*^2}\right), \quad a^\varepsilon = \frac{V_3^\varepsilon}{\sigma^*^3}, \\
b^\delta &= V_0^\delta + \frac{V_1^\delta}{2} \left(1 - \frac{2r}{\sigma^*^2}\right), \quad a^\delta = \frac{V_1^\delta}{\sigma^*^2}.
\end{align*}
\]
LET F Options Price Approximation

- The no-arb. price of a European LETF option on L is given by
 \[P_{\beta}^{\varepsilon,\delta}(t, L_t, Y_t, Z_t) = \mathbb{E}^\star \left\{ e^{-r(T-t)} h(L_T) \mid L_t, Y_t, Z_t \right\}. \]

- **Goal**: examine the role of β in the coeff. of LETF option price asymptotics.

Proposition

For fixed (t, x, y, z), the LETF option price $P_{\beta}^{\varepsilon,\delta}(t, x, y, z)$ is approximated by

\[P_{\beta}^{\varepsilon,\delta} = P_{\beta}^* + O(\varepsilon \log |\varepsilon| + \delta), \]

where

\[P_{\beta}^* = P_{BS}^* + \left\{ \tau V_{0,\beta}^{\delta} + \tau V_{1,\beta}^{\delta} \left(x \frac{\partial}{\partial x} \right) + \frac{V_{3,\beta}^{\varepsilon}}{\sigma_{\beta}^*} \left(x \frac{\partial}{\partial x} \right) \right\} \frac{\partial P_{BS}^*}{\partial \sigma}. \]

Here the β-dependent group market parameters are:

\[V_{0,\beta}^{\delta} = |\beta| V_{0}^{\delta}, \quad V_{1,\beta}^{\delta} = \beta |\beta| V_{1}^{\delta}, \quad V_{3,\beta}^{\varepsilon} = \beta^3 V_{3}^{\varepsilon}, \quad \sigma_{\beta}^* = |\beta| \sigma^*. \]
The IV of an LETF option $I^{(\beta)}$ is defined by

$$I^{(\beta)} = \frac{1}{|\beta|} P_{BS}(P_{\beta}).$$

How does β impact the 1st-order approximation of the IV?

Proposition

The 1st-order approximation of $I^{(\beta)}$ is given by

$$I^{(\beta)} \approx b^*_\beta + \tau b^\delta_\beta + (a^\varepsilon_\beta + \tau a^\delta_\beta) \text{ LMMR},$$

where the skew slopes are given in terms of the unleveraged ETF skew slopes by

$$a^\varepsilon_\beta = \frac{1}{\beta} a^\varepsilon, \quad a^\delta_\beta = \frac{1}{\beta} a^\delta,$$

and where the level parameters $(b^*_\beta, b^\delta_\beta)$ are

$$b^*_\beta = \sigma^* + \frac{\beta V^\varepsilon_3}{2\sigma^*} \left(1 - \frac{2r}{\beta^2 \sigma^*} \right), \quad b^\delta_\beta = V^\delta_0 + \frac{\beta V^\delta_1}{2} \left(1 - \frac{2r}{\beta^2 \sigma^*} \right).$$
Predicting from SPY IVs to LETF IVs

Tim Leung
Implied Volatility of Leveraged ETF Options
Predicting from SPY IVs to LETF IVs

- SSO
- SDS
- UPRO
- SPXU

Tim Leung
Implied Volatility of Leveraged ETF Options
Discrepancy of Calibrated IV Slope & Intercept, 9/09–9/10

Tim Leung

Implied Volatility of Leveraged ETF Options
IV Approximation for All Maturities

Figure: LETF options IVs and their calibrated first-order approximations for all available maturities on August 23, 2010.
IV Approximation for All Maturities

Figure: LETF options IVs and their calibrated first-order approximations for all available maturities on August 23, 2010.
Examining the Slope Relationships

- We calibrate daily the skew parameters \((a_\beta^\varepsilon, a_\beta^\delta)\) for \(\beta \in \{1, \pm 2, \pm 3\}\), and compute the ratio

\[
R_{ij} := \frac{a_{\beta_i}^\varepsilon + \tau a_{\beta_i}^\delta}{a_{\beta_j}^\varepsilon + \tau a_{\beta_j}^\delta}, \quad i, j \in \{1, \pm 2, \pm 3\}, \ i \neq j,
\]

for the 10 pairwise combinations. In theory, we should have

\[
R_{ij} = \frac{\beta_j}{\beta_i}.
\]

- Anticipating this might not hold precisely in the data, we look for any systematic deviation from these relationships.
- For each leverage, we calculate estimates of each \(\beta_i\) as if \(\beta_j\) were correct, and then average over the four estimates for each \(\beta_i\).
- That is, for each daily observation \(R_{ij}\), we compute the estimates

\[
\hat\beta_{j|i} := \beta_i R_{ij}, \quad \hat\beta_{i|j} := \beta_j / R_{ij},
\]

and take average to get

\[
\bar\beta_i = \frac{1}{4} \sum_{j \neq i} \hat\beta_{i|j}.
\]
Figure: Implied β: Histograms of $\bar{\beta}_i$ from 9/09-9/10 LETF IVs.
Average Implied β’s from IVs

<table>
<thead>
<tr>
<th></th>
<th>SPY</th>
<th>SSO</th>
<th>SDS</th>
<th>UPRO</th>
<th>SPXU</th>
</tr>
</thead>
<tbody>
<tr>
<td>β mean</td>
<td>1.0512</td>
<td>1.9840</td>
<td>-2.6314</td>
<td>2.4705</td>
<td>-2.9264</td>
</tr>
<tr>
<td>β standard dev.</td>
<td>0.1092</td>
<td>0.1596</td>
<td>0.5101</td>
<td>0.2605</td>
<td>0.4780</td>
</tr>
</tbody>
</table>

Table: The mean and standard deviation of estimated $\bar{\beta}$ over 9/09–9/10.

- SPY, SSO and, surprisingly, SPXU implied volatilities are consistent with their leverage ratios of 1, 2 and -3 respectively.
- IV skews from SDS ($\beta = -2$) systematically overestimate the magnitude of leverage ratio, as if the LETF was more short than it is actually supposed to be.
- Skews from UPRO ($\beta = 3$) systematically underestimate the leverage ratio, as if the LETF was not so ultra-leveraged.
Moneyness Scaling

- To link the IVs between ETF and LETF options, we introduce the method of moneyness scaling.
- In a general stochastic volatility model, we can write the log LETF price as

\[
\log \left(\frac{L_T}{L_0} \right) = \beta \log \left(\frac{X_T}{X_0} \right) - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \int_0^T \sigma_t^2 dt.
\]

- Conditioning on that the terminal (random) log-moneyness \(\log \left(\frac{X_T}{X_0} \right) \) equal to constant \(LM^{(1)} \), we compute the cond’l expectation (best estimate) of the \(\beta \)-LETF log-moneyness.
- This leads us to define

\[
LM^{(\beta)} := \beta LM^{(1)} - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \mathbb{E}^* \left\{ \int_0^T \sigma_t^2 dt \mid \log \left(\frac{X_T}{X_0} \right) = LM^{(1)} \right\}.
\]
Moneyness Scaling

To link the IVs between ETF and LETF options, we introduce the method of moneyness scaling.

In a general stochastic volatility model, we can write the log LETF price as

$$\log \left(\frac{L_T}{L_0} \right) = \beta \log \left(\frac{X_T}{X_0} \right) - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \int_0^T \sigma_t^2 dt.$$

Conditioning on that the terminal (random) log-moneyness $\log \left(\frac{X_T}{X_0} \right)$ equal to constant $LM^{(1)}$, we compute the cond’l expectation (best estimate) of the β-LETF log-moneyness.

This leads us to define

$$LM^{(\beta)} := \beta LM^{(1)} - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \mathbb{E}^* \left\{ \int_0^T \sigma_t^2 dt \mid \log \left(\frac{X_T}{X_0} \right) = LM^{(1)} \right\}.$$
Connecting Log-moneyness

- Assuming constant σ as in the B-S model, we have the formula:

$$LM^{(\beta)} = \beta LM^{(1)} - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2}\sigma^2 T.$$

- Hence, the β-LETF log-moneyness $LM^{(\beta)}$ is expressed as an affine function of the unleveraged ETF log-moneyness $LM^{(1)}$, reflecting the role of β.

- The moneyness scaling formula can be interpreted via Delta matching.

Proposition

Under the B-S model, an ETF call with $LM^{(1)}$ and a β-LETF call with $LM^{(\beta)}$ have the same Delta if and only if (1) holds.
Simulated IV Comparison via Moneyness Scaling

Figure: [Left] As β increases from 1 to 3, the IV skew becomes visibly flatter. [Right] After moneyness scaling, the IVs are significantly closer.
Empirical IV Comparison via Moneyness Scaling

Figure: *SPY* (blue cross) and *LETF* (red circles) implied volatilities after moneyness scaling on Sept 1, 2010 with 108 days to maturity, plotted against log-moneyness of *SPY* options.
Empirical IV Comparison via Moneyness Scaling

Figure: SPY (blue cross) and LETF (red circles) implied volatilities after moneyness scaling on Sept 1, 2010 with 108 days to maturity, plotted against log-moneyness of SPY options.
Concluding Remarks

- We have discussed a stochastic volatility framework to understand the inter-connectedness of LETF options.
- The method of moneyness scaling enhances the comparison of IVs with different leverage ratios.
- The connection allows us to use the richer unleveraged index/ETF option data to shed light on the less liquid LETF options market.

Related problems: long or short time-to-expiration, liquidity, tracking errors, and feedback effect created by ETFs and LETFs.
Appendix
Assume X follows the local volatility model:

$$\frac{dX_t}{X_t} = r\, dt + \sigma(t, X_t)\, dW^*_t.$$

Then the β-LETF L follows

$$\frac{dL_t}{L_t} = (r - c)\, dt + \beta \sigma(t, X_t)\, dW^*_t.$$

or equivalently,

$$\frac{L_t}{L_0} = \left(\frac{X_t}{X_0}\right)^\beta\, e^{-(r(\beta-1)+c)t - \frac{\beta(\beta-1)}{2} \int_0^t \sigma(u, X_u)^2\, du}.$$

The realized variance term $\int_0^t \sigma(u, X_u)^2\, du$ means that X_t and L_t do not have one-to-one correspondence.

L no longer follows a local volatility model.