Problem Set 2

Due Date: February 27, 2014

1. In class, we showed that a randomized greedy algorithm could be used to obtain a $\frac{1}{2}$-approximation algorithm for maximizing nonnegative, nonmonotone functions. Here we consider a deterministic variant of that algorithm, shown below. Prove that it gives a $\frac{1}{3}$-approximation algorithm for the problem, for f a nonnegative, nonmonotone function. Recall that we defined the function f over the set $\{1, \ldots, n\}$, and defined $\hat{X}_{i} \equiv X_{i} \cup\{i+1, \ldots, n\}$. For your proof, you may find it useful again to consider $\mathrm{OPT}_{i}=X_{i} \cup(\mathrm{OPT} \cap\{i+1, \ldots, n\})$, where OPT is an optimal set. Recall that for randomized algorithm we showed that

$$
E\left[f\left(O P T_{i-1}\right)-f\left(O P T_{i}\right)\right] \leq \frac{1}{2} E\left[f\left(X_{i}\right)-f\left(X_{i-1}\right)+f\left(\hat{X}_{i}\right)-f\left(\hat{X}_{i-1}\right)\right]
$$

What inequality leads to a $\frac{1}{3}$-approximation algorithm?

```
X0}\leftarrow
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    a}\leftarrow\leftarrowf(\mp@subsup{X}{i-1}{}\cup{i})-f(\mp@subsup{X}{i-1}{}
    r}\leftarrow\leftarrowf(\mp@subsup{\hat{X}}{i-1}{}-{i})-f(\mp@subsup{\hat{X}}{i-1}{}
    if }\mp@subsup{a}{i}{}\geq\mp@subsup{r}{i}{}\mathrm{ then
        Xi}\leftarrow\mp@subsup{X}{i-1}{}\cup{i
    else
        Xi}\leftarrow\mp@subsup{X}{i-1}{
return }\mp@subsup{X}{n}{
```

2. W\&S Exercise 2.7
3. W\&S Exercise 2.13 (a) \& (b)
4. W\&S Exercise 2.14
5. In the sparsest cut problem, we are given as input an undirected graph $G=$ (V, E) and edge costs $c_{e} \geq 0$ for all $e \in E$. The goal of the problem is to find a subset $S \subseteq V$ of vertices that minimizes

$$
\frac{\sum_{e \in \delta(S)} c_{e}}{|S||V-S|},
$$

where $\delta(S)$ is the set of all edges with exactly one edge in S. The sparsest cut problem tries to find a small cut in the graph such that there is a roughly equal split of the number of vertices on each side of the cut.
Show that we can find a sparsest cut in polynomial time for bounded treewidth graphs (i.e. graphs in which the treewidth k is a constant). It might be useful to know that in polynomial time one can compute a nice tree decomposition. In a nice tree decomposition, there are four different kinds of nodes in the tree T :

- leaf nodes: a leaf node i is a leaf of T and has $\left|X_{i}\right|=1$;
- introduce nodes: an introduce node i has one child j with $X_{i}=X_{j} \cup\{u\}$ for some $u \in V$;
- forget nodes: a forget node i has one child j with $X_{i}=X_{j}-\{u\}$ for some $u \in V$;
- join nodes: a join node i has two children j and k, with $X_{i}=X_{j}=X_{k}$.

If the treewidth is k, then the number of nodes in T is $O(k n)$.

