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1 Finding an initial basic feasible solution

Recall our discussion from last time about how to find an initial basic feasible solution of a linear
program. Suppose we want to find a basic feasible solution of

min cTx
s.t. Ax = b

x ≥ 0.

We modify the LP so that there is an easy choice of basic solution. We start by solving

min eT z
s.t. Ax+ Iz = b

x ≥ 0
z ≥ 0,

where e is the vector of all ones, and b ≥ 0 (if not, then we can multiply the constraints by
−1 to achieve this). The z variables are called artificial variables, and the x’s are called real vari-
ables. Define x′ := [x z]T and A′ := [A I] so that the constraints of the modified LP can be written
as A′x′ = b, x′ ≥ 0.

Let B be the indices of the artificial variables. Then B is a basis, since the corresponding
columns of A′ are I, the identity, and thus linearly independent. The corresponding basic feasible
solution is x = 0, z = b. We use this to initialize the simplex algorithm.

The simplex method can be one of two possible results (note that the modified LP is never
unbounded: since z ≥ 0, the objective function is bounded from below by 0.)

Case (1): The value of the LP is non-zero (and thus strictly greater than zero). Then there
are no feasible solutions for the original LP, i.e., there are no x such that Ax = b. Indeed, if there
were, we could take z = 0 and thus obtain a new feasible solution to the modified LP with value 0,
a contradiction.

Case (2): The value of the LP is zero. Then there are two subcases:

(i) The Good Case: All artificial variables are non-basic. Then A′B = AB, so that B is a basis
also for the original problem: x′B = (A′B)−1b, x′N = 0 is feasible, so xB = A−1B b, xN = 0 is a
basic feasible solution. for Ax = b.

We can now run the simplex method for the original problem, starting with the basis B.

(ii) The Bad Case: Some artificial variables are in the basis.

In the bad case, we know that all the artificial variables zi = 0. Therefore, the idea is that we
should perform pivots, taking artificial variables out of basis, putting “real” variables in.
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Recall: Ā′ = (A′B)−1A′N

Now we again have two cases. First, suppose there exists a “real” variable j ∈ N such that
Āij 6= 0 for artificial variable i ∈ B. Consider pivot B̂ ← B − {i} ∪ {j}.

Claim 1 Current solution x′ is also a solution associated with B̂

Proof: All we need to show is that x′ satisfies A′x′ = b and x′k = 0 ∀k 6∈ B̂. A′x′ = b since no

change to x′. x′k = 0 ∀k 6∈ B̂ since either k 6∈ B̂ or k = i. For k 6∈ B̂, x′k = 0 (same as before). For
k = i, x′i = 0 (since i an artificial variable). �

Claim 2 B̂ is a basis

Proof: We use the same proof we used to show that a pivot leads to a new basis. We have

A′
B̂

= A′B


1

1


Ā′1j
Ā′2j

...


1

1


↑

ith column

where A′B is non-singular (it was a basis), and the next matrix is also non-singular (because its
determinant value is Āij 6= 0 by assumption. �

Now we suppose for artificial variable i ∈ B, for all real j ∈ N, Ā′ij = 0. Let αi be ith row of

(A′B)−1. Then for each real j ∈ N

αiA
′
j = Āij = 0. (A′j : jth column of A′)

For each real j ∈ B
αiA

′
j = 0

since (A′B)−1AB = I, and i 6= j since j real and i artificial. So then, αiA = 0, which implies that
the rows of A not linearly independent. Either this violates an assumption (if we assumed that A
has linearly independent rows) or we can find a linearly dependent row and eliminate it. Get rid
of constraints linearly dependent on others and continue.

Finding an initial basic feasible solution an associate basis is called Phase I of the simplex
method. Finding an optimal solution given the initial basic feasible solution is called Phase II.

2 The complexity of a pivot

We now turn to thinking about the complexity (number of arithmetic operations) needed to perform
a single pivot. Assume we have a basic feasible solution x and associated basis B. Recall the steps
of a pivot:
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• Step 1: Solve ABxB = b for xB.

• Step 2: Solve AB
T y = cB for y.

• Step 3: Compute c̄ = c−AT y. If c̄ ≥ 0, stop. Else find c̄j < 0

• Step 4: Solve ABd = Aj for d. This computes column

Ā1j
...
¯Amj

 of Ā = (AB
−1)AN .

• Step 5: Compute max ε s.t. εd ≤ b̄ = xB

• Step 6: Update solution to x̂ where x̂j = ε. x̂B = xB − εd, Basis B̂ = B − {i∗} ∪ {j}

Let’s now consider the total work involved:

• Step 1,2, and 4: need to solve m ×m system of equations. : O(m3) (this is faster if AB is
sparse, lots of zeros)

• Step 5 and 6: check O(m) inequalities: O(m) work

• In Step 3, to compute any component of c̄ is O(m) work, but there are n of them. Overall,
O(mn) times if we look through all entries.

Therefore, the overall work involved is O(m3 +mn) per pivot.
Suppose initially AB = I. (If not true, we can multiply the constraints by AB

−1 to make it
true). Suppose B0, B1, B2, · · ·Bk be bases in a sequence of k pivots.

Recall that

ABi+1 = ABi


1

1

d
 1

1


↖

called an eta matrix

Let Ei be ith eta matrix. Given that this, is the case how hard is it to solve the systems

AB1x = b for x

AB1
T y = cB1 for y

AB1d = Aj for d
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We know that AB1 = E1 for E1 an eta matrix. So AB1x = b is equivalent to
1

1

d
 1

1


 x

 =

 b


jth

This implies
xi + dixj = bi (i 6= j) and djxj = bj (i = j).

Then to solve this system, set xj =
bj
dj

, and then xi = bi − dibj
dj
. Solving this then takes O(m) time.

Now consider solving AB1
T y = cB1 for y. Then

1 0 · · · 0 0
0 1 · · · 0 0

d

0 0 · · · 1 0
0 0 · · · 0 1


 y

 =

 cB1


This implies

yi = ci i 6= j and
n∑

i=1

diyi = cj ,

which we can easily solve in O(m) time.
In the general case, we want to solve equations of the form ABk

x = b. Note that we can solve
(AB0E1E2...Ek)x = b if we solve (E1E2...Ek)x = b. Let x1 denote the product E2 · · ·Ekx (where
we still don’t know x). Then E1x1 = b. We can solve this system for x1 in O(m) time. Now we
iteratively solve E2 . . . Ekx = x1 for x. Thus we can solve for x in O(km) time.

Hence in general, after k pivots, we can perform a pivot in O(km + mn) time. Note that this
running time gets larger after we have performed a large number of pivots, so in practice, after
some number of iterations, we recompute AB

−1, make the current basis I, and start over again.
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