
1

Photo Gallery

INFO 2310:
Topics in Web Design and

Programming

Want an internship this summer?
Interested in an insider’s look into these

companies?

ISSA General Meeting
Student Internship Panel
Monday, 11/3 @ 4:30 PM, Upson 205

All together now…

We now know pretty much everything we
need to know to put together a pretty
good website quickly.

We’ll demonstrate by putting together a
photo gallery during this lecture.

Create the gallery

rails –d sqlite3 gallery
(or in Komodo: New Project from

Template, choosing Ruby on Rails,
naming the project whatever you want,
and using the sqlite3 db).

Create some models

ruby script/generate scaffold
photo title:string
description:text
taken_on:date
image_file_name:string
image_content_type:string
image_file_size:integer

or whatever attributes you want.

Albums

ruby script/generate scaffold
album title:string

or whatever fields you think you want.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

Albumizations
These will connect photos and albums.
ruby script/generate model albumization
To the migration add

class CreateAlbumizations < ActiveRecord::Migration
def self.up
create_table :albumizations do |t|
t.integer :album_id, :photo_id, :position

t.timestamps
end

end

Create the DBs

Go ahead and run rake db:migrate.

Making associations
Now we should add to the models the associations we

intend.
To the album model, we note that it has many photos

(and that the specification of the photos happens
through the albumizations model).

has_many :albumizations, :dependent =>
:destroy, :order => “position”

has_many :photos, :through =>
:albumizations, :uniq => true, :order
=> “position”

More associations

To the photo model, we note that it “has
many” albums (since a photo can be in
multiple albums).

has_many :albumizations,
:dependent => :destroy

has_many :albums, :through =>
:albumizations

More associations

Last, albumizations belong to both photos
and albums via its foreign keys.

belongs_to :photo
belongs_to :album

Update the routes

To config/routes.rb, add the routes
(to the top of the file)

map.resources :photos
map.resources :albums,
:has_many => :photos

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

Paperclip

We’re going to use a gem called paperclip
that will handle the images for us. This
uses the underlying Imagemagick
program that we’ve already installed.

In config/environment.rb, add (in
the appropriate place)
config.gem “paperclip”

Paperclip

Go ahead and rake gems:install. If
you’re using a lab machine with a flash
drive, you probably want to then rake
gems:unpack.

Adding images to photos
Now we can tell the photo model about images. Add this to the

photo model:

has_attached_file :image,
:styles => {

:square => "75x75#",
:thumb => "100x100>",
:small => "240x240>",
:medium => "500x500>",
:large => "1024x1024>" }

This will let us display images in these various sizes, with
Imagemagick taking care of resizing and cropping as needed
(the ‘#’ and ‘>’ commands specify resizing and cropping).

Selecting a file
To add a form input for the image in a view, use

<%= f.file_field :image %>

(e.g. probably want to add this to
views/photos/new.html.erb). We also need to
say that the form is multipart, e.g.

<% form_for(@photos), :html =>
{:multipart => true} do |f| %>

Showing an image

Now in a view that you want to display a
photo (e.g. views/photos/show.html.erb)

<%= image_tag
@photo.image.url(:medium) %>

/photos/1 vs. /albums/1/photos/1

The way we have things set up, both
/photos/1 and /albums/1/photos/1 will
show photo 1, even if it isn’t in album 1.
Let’s fix this in photos_controller.rb.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

photos_controller.rb
Change show action from:

@photo = Photo.find(params[:id])

to

@album = Album.find(params[:album_id]) if
params[:album_id]

@photo = @album ? @album.photos.find(params[:id])
: Photo.find(params[:id], :include => :albums)

Then we get an error if the photo isn’t in the album.

More controller editing
We’d like /albums/:id to show all photos in the

album, not /albums/:id/photos, so let’s redirect
the latter to the former.

In photos_controller.rb, we add the following at
the start of the index action:

redirect_to :controller =>
'albums', :action => 'show', :id
=> params[:album_id] if
params[:album_id]

Some thoughts on views

One idea on how to decide which albums
hold which photos: let’s do a checklist of
albums when we add/edit a photo.

We’ll do this via a partial that we’ll request
to be displayed from within
app/views/photos/new.html.erb and
app/views/photos/edit.html.erb.

Rendering the partial

We can first add the request to render the
partial (at the appropriate place in the form):

<%= render :partial => 'albums',
:locals => {:f => f} %>

Note that we pass in the form object f as a local
variable.

The partial
Then add the partial views/photos/_albums.html.erb:

<h4>Albums</h4>

<% @albums.each do |a| %>
<%= check_box_tag 'photo[album_ids][]', a.id,

@photo.albums.include?(a) %>
<%= hidden_field_tag 'photo[album_ids][]', ''

%>
<%= f.label :id, a.title %>

<% end -%>

Making albumizations work

To get this to work, we need to have the
albumization (:photo_id, :album_id)
saved after we save the photo (since a
photo_id won’t exist until after the save).

To do this, we play some tricks with the
album_ids getters/setters in the Photos
model.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

Album_ids getters/setters
In app/models/photo.rb we add

after_save :update_albums

def album_ids=(ids)
if new_record?

@new_album_ids = ids.reject(&:blank?)
else

self.albumizations.each { |z| z.destroy unless
ids.delete(z.album_id.to_s) }
ids.reject(&:blank?).each {|id| self.albumizations.create(:album_id =>
id) }

end
end

def album_ids
new_record? ? @new_album_ids : albums.map(&:id)

end

private
def update_albums

self.album_ids = @new_album_ids if @new_album_ids
end

This calls a method we need to add to the
album model.

def to_s
self.title

end

Orphans

What should we do about photos that aren’t in
any album?

One possibility: we can set up a separate route
(/photos/orphaned) to display them.

In config/routes.rb, change the map.resources
for :photos to

map.resources :photos, :collection
=> {'orphaned' => :get}

Orphans

Now we add an action to the
photos_controller to handle this.

GET /photos/orphaned
def orphaned

@photos = Photo.orphaned
end

Orphans
We add some code to the Photo model to return all the

orphaned photos.

def self.orphaned
find(:all, :include =>
:albumizations).select {|p|
p.albumizations.empty? }

end

Finally, we need to add a view in
app/views/photos/orphaned.html.erb. It should
display all the photos from @photos.

Secondary content

Recall that we can create an application-wide
layout in views/layouts/application.html.erb
(as long as the other modelname.html.erb
files aren’t there).

One thing we might want to do is to have a div
for secondary content (for some sort of
secondary navigation).

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

6

In the layout
We can do this in application.html.erb by saying

<div id="primary-content">
<%= yield %>

</div>

<div id="secondary-content">
<%= yield(:secondary) %>

</div>

content_for
Now in the view we can populate the content of the div using content_for. E.g.

in app/views/photo/index.html.erb, we add

<% content_for :secondary do %>
<h3>Albums</h3>
<ul id="albums_list">
<% @albums.each do |album| %>

<%= link_to album.title, album %>

<%= link_to

image_tag(album.photos.last.image.url(:square)), album if
album.photos.last %>

<% end -%>

<% end -%>

Then add to index, new, edit actions (in
photos_controller.rb) something to pass
in @albums array:

@albums = Album.find(:all)

Next and previous

We can define next and previous
messages on a photo, so that if viewing
a photo inside an album, we can get the
next photo in that album.

Next and previous
In our Photo model (app/models/photo), we define

def next(album=nil)
collection = album ? album.photos :
self.class.find(:all)
collection.size == collection.index(self) + 1 ?
collection.first : collection[collection.index(self)
+ 1]

end

def previous(album=nil)
collection = album ? album.photos :
self.class.find(:all)
collection[collection.index(self) - 1]

end

To do
There’s still plenty to do to get this to work nicely.
• Add the orphaned view

(app/views/photos/orphaned.html.erb)
• Fix the album show view

(app/views/albums/show.html.erb) to show all the
photos in the album (in the correct position!)

• Add ‘next’ and ‘previous’ to work for displaying
photos in an album (or just looking at all photos)

• Make it look nice with some CSS…

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

7

Other things

• Play with JavaScript/Ajax effects to
allow for drag-n-drop sorting of photos
in an album.

Want an internship this summer?
Interested in an insider’s look into these

companies?

ISSA General Meeting
Student Internship Panel
Monday, 11/3 @ 4:30 PM, Upson 205

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

