
1

JavaScript and Ajax

INFO 2310:
Topics in Web Design and

Programming

Web 2.0

Most modern websites make extensive
use of JavaScript and Ajax. How can
we use them in Rails?

Baked in

Just as with testing, much of this is already
wired right into Rails. In fact, two JS
libraries are provided as part of Rails:
Prototype and Scriptaculous.

To include these libraries, in the <head> tag
of the corresponding view add
<%= javascript_include_tag :defaults %>

Includes

This will include 5 JS files:
• prototype.js
• effects.js
• dragdrop.js
• controls.js
• application.js
Can also specify just the files you want.

Rails helpers

Rather than needing to know the JS
yourself, Rails has a number of built-in
helper functions to write the JS with.

Example

As a simple start, add the following to the
bottom of
app/views/posts/index.html.erb.

<%= link_to_function "Annoying
pop-up", "alert('Hi there!')"
%>

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

HTML/JS

The underlying HTML/JS created is then:

<a href="#" onclick="alert('Hi
there!'); return
false;">Annoying pop-up

There are some issues with this that we’ll
return to later.

More useful functions
We can also link to more useful functions from the Scriptaculous

library.
For /views/posts/show.html.erb, modify the line
<%= render :partial => "/comments/comment",

:collection => @post.comments %>
to
<div id="comments">
<%= render :partial => "/comments/comment",

:collection => @post.comments %>
</div>
<%= link_to_function "Toggle comments" do |page|

page.visual_effect(:toggle_blind, "comments")
end %>

Ajax

link_to_remote
We can set up an Ajax call to take place on the clicking of a

link via ‘link_to_remote’.
Let’s add an Ajax call to delete a comment via

link_to_remote in
app/views/comments/_comment.html.erb:

<%= link_to_remote ‘Delete',
:url => post_comment_path (@post, comment),
:method => :delete,
:confirm => 'Are you sure?' %>

You can then try deleting a comment.

Sure enough, when you refresh the page,
it is gone, but that isn’t what Web 2.0 is
all about…

Routing Ajax

To get things to work the way we think
they should, we need to route the Ajax
call in the comments controller.

We need to tell the ‘destroy’ method what
to do in case of a JS request.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

In app/controllers/comments_controller.rb, we change the last line of
the destroy method from

redirect_to post_url(@post)

to

respond_to do |format|
format.html
{redirect_to(post_comments_url(@post)) }
format.js

end

destroy
def destroy
@comment = @post.comments.find(params[:id])
@post.comments.delete(@comment)
respond_to do |format|

format.html {
redirect_to(post_comments_url(@post)) }

format.js
end

end

.js.rjs

Just like format.html by itself in
respond_to would tell Rails to go render
destroy.html.erb, format.js tells Rails to
go render destroy.js.rjs.

RJS = ‘Ruby JavaScript’.

destroy.js.rjs

In views/comments, we make a file
destroy.js.rjs with the single line:

page["comment-
#{@comment.id}"].remove

This looks for an element in the page with
id comment-#, and removes it.

Adding the id

In order for this to work, we need to add the ids
to the comments. Change the first line of the
partial view/comments/_comment.html.erb
from

<div class="comment">
to

<div class="comment" id="comment-
<%= comment.id %>" >

Try it…

Restart the server and try it…

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

Take 2

It’s a little unsatisfying to have it just
disappear, no?

Let’s add a little effect to make it fade
away before disappearing.

Fade away…
Edit destroy.rjs.js to now read:

page.visual_effect :fade, "comment-
#{@comment.id}", :duration => 1.0

page.delay 1 do
page["comment-
#{@comment.id}"].remove

end

Try it!

Other things

We can also do things like
page[id].hide
page[id].show
page[id].toggle
page[id].insert_html :before,
html

page[id].replace_html html

Other things

We don’t have to return RJS in response
to an Ajax call; we can, for instance,
return some HTML instead.

Let’s do this for our login form…

Changing the link
In views/layouts/application.html.erb, change the login link from
<%= link_to('login', login_path) %>

to
<%= link_to_remote 'login', :url => login_path,
:update => 'login_id' %>

…
<%= link_to_unless_current('all posts',
posts_path) %>

The result of the Ajax call will be used to update the element of id
‘login_id’. The Ajax call is made to the login_path, which in our
routes file is defined to be the new method of
sessions_controller.

Changing the controller
Now we need to tell the sessions controller what to do when it gets a

Ajax call.

To the end of the new method in app/controllers/sessions_controller.rb,
add

respond_to do |format|
format.html
format.js { render :action => 'new-tiny‘ }

end

This tells the controller to render the view in views/sessions/new-
tiny.html.erb, which gets returned to the Ajax call.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

new-tiny.html.erb

<% form_tag 'sessions' do -%>
<label for="email">Email:</label>
<%= text_field_tag :email %>

<label
for="password">Password:</label>
<%= password_field_tag :password %>
<%= submit_tag 'Login' %>

<% end -%>

Other Ajax calls

In addition to the link_to_remote helper,
there are also:

• remote_form_for, remote_form_tag:
Ajaxified forms; Ajax call made ‘onsubmit’

• observe_field, observe_form:
attaches Ajax calls to ‘onchange’ events of a
particular form field, or all form fields

• periodically_call_remote: Makes Ajax
call at specified intervals

Plugins and Ajax
There are plugins that give us more helper functions for

using Ajax.
Let’s try one that allows for ‘in place’ editing.
To get this one, either use
ruby script/plugin install
git://github.com/rails/in_place_editing
.git

or download the files from
http://github.com/rails/in_place_editing/tree/master

and install in vendor/plugins/in_place_editing.

We’ll allow for editing the titles of posts (we
could do bodies too, but I’m not sure how that
would interact with our markdown interpreter).

In the app/controllers/posts_controllers, we list
the model, fields that we want to attach the in-
place editors.

class PostsController <
ApplicationController
in_place_edit_for :post, :title

Now we add the editor to our view.
Remember that we only want to allow
editing by authors.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://github.com/rails/in_place_editing/tree/master
http://www.pdfdesk.com

6

In views/posts/show.html.erb, replace
<%=h @post.title %>

with
<% if
@post.editable_by?(current_user) %>

<%= in_place_editor_field :post,
"title" %>
<% else %>

<%=h @post.title %>
<% end %>

Try it!

Restart the server and give it a try…

Problems with Rails’ JS
There are some issues with the

JavaScript created by Rails’ helpers
functions.

Any guesses?

We want JavaScript that is:
• Unobtrusive (lives in a separate

‘behavior’ layer, just like CSS is a
separate ‘style’ layer)

• Degrades gracefully (gives reasonable
equivalents if JS turned off)

Obtrusive JS

Rails is currently pretty hopeless at the
moment for unobtrusive JS if we use the
standard helpers.

There are ways to write the JS directly in
a separate JS file, but we won’t go
there.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

7

Graceful degradation
We can help with graceful degradation a bit,

though, by providing an href in the case that
JS is disabled.

For instance, link_to_remote takes a third
argument that gives the href:

link_to_remote 'login', { :url =>
login_path, :update => 'login_id'
}, :href => login_path

Other libraries

jQuery

It’s possible to use other JS libraries such as
jQuery with Rails – they just don’t come
bundled in.

For instance, the plugin jRails
(http://ennerchi.com/projects/jrails) replaces
all the underlying Prototype/Scriptaculous
calls in link_to_remote, page.hide, etc. with
jQuery calls, and allows for other jQuery
effects.

Reminders…

Next week: A photo gallery in one lecture

Be sure to bring some digital images for your
gallery. The galleries will have multiple
albums, so bring images for more than one
album.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://ennerchi.com/projects/jrails
http://www.pdfdesk.com

