
1

Testing and Plugins

INFO 2310:
Topics in Web Design and

Programming

Matt Kulick ’07, Associate Product
Manager at Google, is coming!

ISSA General Meeting with Matt Kulick ’07
IS @ Cornell and beyond

Tuesday, 10/21 @ 4:30 PM, Upson 205

Google Tech Talk with Matt Kulick ’07
Wednesday, 10/22 @ 5:00 PM, Phillips 101

Where we were

Last time we started talking about testing
our Rails code. Recall that there are
three types of tests:

• Unit tests (for models)
• Functional tests (for single controllers)
• Integration tests (for everything

together)

Baked in

Rails has support for this already built-in
in the test directory. Note there are four
directories: test/unit, test/functional,
test/integration, and test/fixtures.

Recall that fixtures let us define test data
for our tests.

More about fixtures

More DRYness

Fixtures allow you to define data once
and reuse it in multiple tests. For
instance, let’s create some sample
users more imaginative than the
defaults.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

Add this to test/fixtures/users.yml:

<% salt = Digest::SHA256.hexdigest('salt') %>
<% pass = Digest::SHA256.hexdigest("--#{salt}--password--")%>

matz:
name: Yukihiro Matsumoto
email: matz@ruby-lang.org
salt: <%= salt %>
crypted_password: <%= pass %>

why:
name: Why the Lucky Stiff
email: why@whytheluckystiff.net
salt: <%= salt %>
crypted_password: <%= pass %>

Note that we can use ERB in these yml files…

Associations
We can now have other fixtures refer to these ones.

Edit test/fixtures/posts.yml:
one:
title: My First Post
body: Hurray!
author: matz

two:
title: Another Post
body: Here is another post.
author: why

More tests

Now we can write tests referring to users in
test/unit/post_test.rb.

def test_should_be_editable_by_its_author
assert posts(:one).editable_by?(posts(:one).author)

end

Try to write
test_should_not_be_editable_by_a_non_author

Running unit tests

Recall that you can run unit tests either
through Komodo (Rails Tools/Test/Unit
Tests) or via rake (‘rake
test:units’).

Functional tests

Functional tests
We test the controllers via functional tests. Note that the scaffold

created some reasonable functional tests in
test/functional/posts_controller_test.rb such as

def test_should_get_index
get :index
assert_response :success
assert_not_nil assigns(:posts)

end

We can run these via ‘ruby –I test
test/functional/posts_controller_test.rb’. We
could also run ‘rake test:functionals’, but this will
bomb bigtime…

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

Problems

In fact, even here we get two problems.

The first is with creating a post, which
fails. Why?

The second is with editing a post, which
has an error. Why?

First fix
The first is an error in test_should_create_post since a post with no

title and body is created.

def test_should_create_post
assert_difference('Post.count') do
post :create, :post => {:title => 'A post',

:body => 'A body' }
end

assert_redirected_to post_path(assigns(:post))
end

Second problem

In a sense, the second issue shows that
things are working the way they are
supposed to – but we need to test them
differently.

In this case, we need to have the ability to
log in a user. So let’s write a helper
function to do this.

In test/test_helper.rb, add (at the bottom):

def login_as(user)
@request.session[:user_id] = user
? users(user).id : nil

end

Log in first

Now we can edit test_should_get_edit to login first:

def test_should_get_edit_if_editable_by
login_as(:matz)
get :edit, :id => posts(:one).id
assert_response :success

end

Testing for bad guys
We can also add a test that checks to see that the exception is

raised if someone does what they aren’t supposed to:

def test_should_be_forbidden_if_not_editable_by
login_as(:why)
assert_raise
AuthorizationFu::Exceptions::SecurityTransgress
ion do
get :edit, :id => posts(:one).id

end
end

Now rerun tests (‘ruby –I test
test/functionals/posts_controller_test.rb’).

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

Integration tests

Testing logins

But suppose we really wanted to test the
login process; that is, test the process of
someone entering their login name and
password, and being redirected to the
right place.

For this (among many other things), we
can write integration tests.

Not scaffolded

Integration tests are not created
automatically upon scaffolding a model
or generating a controller, so we have to
generate them ourselves.

‘ruby script/generate
integration_test login’ will
create a file
test/integration/login_test.rb.

login_test.rb
require 'test_helper‘
class LoginTest <
ActionController::IntegrationTest
fixtures :your, :models

Replace this with your real tests.
def test_truth
assert true

end
end

Adding fixtures

We’ll want to use the user fixtures, so
uncomment the fixture line and have it
read ‘fixtures :users’.

A login test
def test_login_known_user
get login_path
assert_response :success
assert_template "sessions/new"
post sessions_path, :email =>
users(:matz).email, :password => 'password‘
assert_response :redirect
follow_redirect!
assert_response :success
assert_template "posts/index"
assert_select "p", /Yukihiro Matsumoto/

end

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

Another example

We can also create integration tests to
simulate multiple users interacting with
the system at the same time.

We can use a command
‘open_session’ to create a session for
each user using the application.

Suppose one user deletes a comment at
the same time another user is editing it.

A possible test (with no asserts)
def test_destroy_post_while_editing

matz = open_session
why = open_session
post = posts(:one)

Login both users
matz.post sessions_path, :email => users(:matz).email, :password =>
'password'

why.post sessions_path, :email => users(:why).email, :password =>
'password‘

Matz goes to edit the post
matz.get edit_post_path(post)
_why decides to delete the post

why.delete post_path(post), :id => post.id
Matz tries to save his edits
matz.put post_path(post), :post => {:title => "New Title", :body =>
"New body" }

end

More DRYness
We could also make this much more DRY by writing lots of helper

methods, so that the test would look something like:

def test_create_edit_comment
matz = open_session_as(:matz)
why = open_session_as(:why)
topfunky = open_session # not a registered user

new_post = matz.creates_post(...)
why.edits_post(new_post, ...)
topfunky.comments_on(new_post, ...)

end

DSLs

Note that you are close to writing your
own little testing language in this case;
sometimes called a domain specific
language, and makes it easy to write
lots of tests in a compact way…

Other stuff on testing

There are various other testing frameworks to
help you write tests. Dean mentions:

• Shoulda
(http://www.thoughtbot.com/projects/shoulda)
(alternate unit testing)

• Factory Girl
(http://www.thoughtbot.com/projects/factory_g
irl) (alternative to fixtures)

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.thoughtbot.com/projects/shoulda
http://www.thoughtbot.com/projects/factory_g
http://www.pdfdesk.com

6

TATFT

Also, an amusing, slightly jargony, but
pointed talk on testing:

http://rubyhoedown2008.confreaks.com/0
5-bryan-liles-lightning-talk-tatft-test-all-
the-f-in-time.html

Gems and Plugins

Extensibility

One of the nice things about Rails is that
there are a number of prepackaged bits
of code created by other users that you
can incorporate into your own code.

They come in two flavors: gems and
plugins.

Gems

RubyGems is the Ruby package
management system. So not always
specific to Rails; they just happen to be
useful.

Recall that Rails itself is a gem.
To use them, we list them specifically in a

file in config/environment.rb.

Plugins

Plugins are specific to Rails. They are present
in vendor/plugins, and are automatically
loaded when the server is started.

Plugins seem to be on the wane in Rails. Gems
used to be more of a pain to deal with, but a
part of the new version of Rails helps deal
with gem dependencies, which has lessened
the need for plugins.

Using a gem

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://rubyhoedown2008.confreaks.com/0
http://www.pdfdesk.com

7

Maruku

To give ourselves some ideas of how a
gem gets used, we’ll practice with
“Maruku”, a gem that interprets
‘markdown’ (see
http://maruku.rubyforge.org/ and
http://en.wikipedia.org/wiki/Markdown).

Including Maruku

To tell Rails we want to use Maruku in
config/environment.rb, we add a line
saying this. Look for the comment “#
Specify gems this application
depends on”. After the comment, add
the line

config.gem ‘maruku’

Rake
Now we can use some rake-related tasks to help us

manage our gems. Try typing ‘rake –T gems’.
Now try ‘rake gems’.
Now ‘rake gems:install’.
Now ‘rake gems:unpack:dependencies’. This will

put the gem in your blog directory (and any gems it
depends on), so we don’t need to rely on it being
installed on the machines in this cluster. In general
you might not need to do this if the gem is installed
on the machine you’re using.

Using Maruku
In views/posts/show.html.erb, we can edit
<p>
Body:
<%=h @post.body %>

</p>
to
<p>
Body:
<% body = Maruku.new(@post.body) %>
<%= body.to_html %>

</p>

Now try it…
Fire up the server, and try a post like this…

This is the headline!

Now for an *itemized* list:
- First item
- Second item

And some code:
`<%= body.to_html %>`

Using a plugin

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://maruku.rubyforge.org/and
http://en.wikipedia.org/wiki/Markdown
http://www.pdfdesk.com

8

A nice thing

There are lots of plugins: there’s a huge
directory of them at
http://agilewebdevelopment.com/plugins.

Git

It’s useful to do this via version control software
(such as Git). This is slightly problematic in that
Git isn’t currently installed on these machines.

To install on your own machine, go to
http://code.google.com/p/msysgit/downloads/list,
and install the first program listed (“Full installer
if you want to use official Git 1.6.0.2”).

will_paginate

To give ourselves some practice using a
plugin, we’ll use the plugin
‘will_paginate’, something that let’s us
paginate a list of items (so that only X of
them appear at a time).

Installing will_paginate
If you have Git installed, you can install the

plugin via the following command:

ruby script/plugin install
git://github.com/mislav/will_pagin
ate.git

Note that this grabs the source code from some
location (github.com here) and installs it
under vendor/plugins.

Installing will_paginate

If you don’t have Git installed, you can
download the plugin from
http://github.com/mislav/will_paginate/tr
ee/master, unzip it, and put files into
vendor/plugin/will_paginate.

Using will_paginate
We now alter the index method of the posts controller to return only

a subset of the posts. Rather than:

def index
@posts = Post.find(:all)

we instead use

def index
@posts = Post.paginate :page => params[:page],
:order => 'updated_at DESC'

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://agilewebdevelopment.com/plugins.
http://code.google.com/p/msysgit/downloads/list,
http://github.com/mislav/will_paginate/tr
http://www.pdfdesk.com

9

Using will_paginate

This may not do much yet, since the default is
50 items per page. Let’s lower the default:

def index
@posts = Post.paginate :page =>
params[:page], :per_page => 5,
:order => 'updated_at DESC'

Using will_paginate
We also need to add pagination controls to our

view. At the bottom of
views/posts/index.html.erb, add:

<%= will_paginate @posts %>

before

<%= link_to 'New post',
new_post_path %>

Try it!

You can experiment with the ordering,
number of items per page, etc.

For more info, look at
http://github.com/mislav/will_paginate/tr
ee/master.

Gems vs. plugins
Nice things about gems:
• If installed in the underlying system, you don’t need

to have them in your repository (unlike plugins)
• Can easily update them all (via gem update). Some

work involved in keeping plugins up-to-date.
• Deals nicely with dependencies on other gems.
Nice things about plugins:
• There are still a lot of them that aren’t gems yet.

More fun things…
Other plugins worth looking at for our blog (as recommended by

Dean):

• Add tags to posts using has_many_polymorphs
(http://blog.evanweaver.com/files/doc/fauna/has_many_polymor
phs/files/README.html).

• Let people leave comments via Open ID authentication
(http://github.com/rails/open_id_authentication/tree/master)

• Attach images to uploads via paperclip
(http://www.thoughtbot.com/projects/paperclip).

• Allow full-text searching using ultrasphinx
(http://blog.evanweaver.com/files/doc/fauna/ultrasphinx/files/RE
ADME.html).

Reminders

I do expect people to do more with their
blog than simply what we did in class,
by adding styling or functionality in
some way. Gems/plugins might be a
good way to go about this.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://github.com/mislav/will_paginate/tr
http://blog.evanweaver.com/files/doc/fauna/has_many_polymor
http://github.com/rails/open_id_authentication/tree/master
http://www.thoughtbot.com/projects/paperclip
http://blog.evanweaver.com/files/doc/fauna/ultrasphinx/files/RE
http://www.pdfdesk.com

10

Matt Kulick ’07, Associate Product
Manager at Google, is coming!

ISSA General Meeting with Matt Kulick ’07
IS @ Cornell and beyond

Tuesday, 10/21 @ 4:30 PM, Upson 205

Google Tech Talk with Matt Kulick ’07
Wednesday, 10/22 @ 5:00 PM, Phillips 101

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

