
1

Authorization and Testing

INFO 2310:
Topics in Web Design and

Programming

Where we are

Last time: We added the ability of users to
log in, and made sure that we treated
their passwords in a secure fashion.

This time: How can we use user
information to limit actions?

For example
Wouldn’t it be nice to ask a post whether the current user

is authorized to edit it?
@post.editable_by?(current_user)

We could further add methods to correspond to each of the
possible CRUD (Create/Read/Update/Destroy)
operations:

viewable_by?
creatable_by?
editable_by?
destroyable_by?

Try it…

We can just add this to our post model in
app/models/post.rb.

def editable_by?(editor)
editor == self.author

end

Then in the views/posts/show.html.erb, we can restrict
access to editing. Change

<%= link_to 'Edit', edit_post_path(@post)
%>

to
<%= link_to 'Edit', edit_post_path(@post)
if @post.editable_by?(current_user) %>

Do the same in views/posts/index.html.erb.

Extensions

Now we can add the same methods to
User and Comments…

But isn’t this a little un-DRY? (Recall
DRY = ‘Don’t Repeat Yourself!’) How
can we add default methods to all these
objects at once?

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

The magic of open classes

All our models are subclasses of
ActiveRecord::Base. So we can just
add our desired extra methods to this
object… which Ruby allows us to do.
Then all the models will have these by
default.

Message passing

A bit about how Ruby method calls work:
they all pass messages to the object.
So

object.explode!
is actually passing the message
:explode! to the object. We can also
do this directly by writing

object.send(:explode!)

A module for the default methods
We create the default methods in an ‘AuthorizationFu’ module, which we will save as

lib/authorization_fu.rb. The final line instructs ActiveRecord to include the methods as part
of the class.

module AuthorizationFu
module InstanceMethods

def viewable_by?(viewer)
true

end
def creatable_by?(creator)
true

end
def editable_by?(editor)
true

end
def destroyable_by?(destroyer)
true

end
end

end

ActiveRecord::Base.send(:include, AuthorizationFu::InstanceMethods)

Loading the methods

Add a require to the end of
config/environment.rb to force this to get
loaded on initialization (note that you
need to restart the server to get this to
work).

require ‘authorization_fu’

Almost

This almost works to restrict editing
access to the post author. What have
we overlooked?

Remember that people can navigate
directly to the editing page /posts/3/edit.
How can we prevent this?

Raising an exception

Let’s raise an exception in the controller if
someone tries to edit a post who isn’t
suppose to.

In app/controllers/posts_controller.rb, in the edit
action, after finding the post, add

raise SecurityTransgression unless
@post.editable_by?(current_user)

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

Adding an Exception
Now we need to add SecurityTransgression as a subclass of the Exceptions class,

but we can do this in our lib/authorization_fu.rb file:

module AuthorizationFu
module InstanceMethods
…
module Exceptions
class SecurityTransgression < Exception
end

end
end

ActiveRecord::Base.send(:include,
AuthorizationFu::InstanceMethods)

ActionController::Base.send(:include,
AuthorizationFu::Exceptions)

Recovering gracefully

Rather than blowing up with an exception
whenever someone tries to do this, we should
just give them a 403 error. So we need to
catch them somewhere.

We can do this with a method rescue_action
defined in app/controllers/application.rb. This
will catch any exception raised in any of the
controllers.

To the rescue
Add to app/controllers/application.rb:

def rescue_action(e)
case e
when SecurityTransgression

respond_to do |format|
format.xml { head :forbidden }
format.html { render :file =>

"#{RAILS_ROOT}/public/403.html", :status =>
:forbidden }
end

else
super(e)

end
end

403

Note that this renders the 403.html file
found in public. Except there isn’t one.
So take the 404 page and make one.

Debugging
Rails has a breakpointing/debugging

ability. The server can be started with a
debugging option via ‘ruby
script/server –u’. Then any place
the ‘debugger’ command occurs in
your code will drop you into a debugger.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

You need to install the debugger first via
‘gem install ruby-debug’. Note
that this hasn’t been done on the
machines in this cluster.

Testing

You’re testing, right?

Rails assumes you will be writing tests to
check your code. There is a separate
test version of the database, and default
test folder. When we created our post,
user, and comment models via
scaffolds, Rails automatically created
test files to go along with everything
else.

Test types

Rails supports three different types of tests:
• Unit tests: For models
• Functional tests: For controllers
• Integration tests: For everything altogether
Note that within the test directory, there are unit,

functional, and integration folders (also a
fixtures folder for creating test data).

Fixtures
Some sample data from test/fixtures/user.yml:

one:
name: MyString
email: MyString
password: MyString

two:
name: MyString
email: MyString
password: MyString

Our users don’t have passwords any more, so delete these lines.

A starting point
Let’s look at test/unit/post_test.rb:

require 'test_helper‘

class PostTest < ActiveSupport::TestCase
Replace this with your real tests.
def test_truth
assert true

end
end

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

Unit tests

Rails tests are built on top of Ruby’s
Test::Unit framework. We write tests
called test_blahblahblah and
assert some number of conditions.

If all conditions are true, the test passes,
otherwise it fails.

Running tests

We usually run tests via rake. To see what
we can run from rake, try

‘rake –T test’.

rake db:test:clone # Recreate the test database from the current...
rake db:test:clone_structure # Recreate the test databases from the develo...
rake db:test:prepare # Prepare the test database and load the schema
rake db:test:purge # Empty the test database
rake test # Run all unit, functional and integration tests
rake test:functionals # Run tests for functionalsdb:test:prepare / ...
rake test:integration # Run tests for integrationdb:test:prepare / ...
rake test:plugins # Run tests for pluginsenvironment / Run the ...
rake test:recent # Run tests for recentdb:test:prepare / Test ...
rake test:uncommitted # Run tests for uncommitteddb:test:prepare / ...
rake test:units # Run tests for unitsdb:test:prepare / Run th...

Let’s try it!
For this lesson, we’ll focus on unit testing. So let’s try to run unit

tests via ‘rake test:units’. (From Komodo: ‘Rails
Tools/Test/Unit Tests’).

Started
...
Finished in 2.532 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

We didn’t write any tests yet! What ran?

What should we write?
What kind of tests should we write? Here are some

starting suggestions:

test_should_be_valid_with_valid_attributes
test_should_be_invalid_without_a_title
test_should_be_invalid_without_a_body
test_should_be_creatable_by_any_user
test_should_be_editable_by_its_author
test_should_not_be_editable_by_a_non_author

Let’s try some!
Write the following tests in test/unit/post_test.rb, then run them.

def test_should_be_valid_with_valid_attributes
assert_valid Post.new(:title => 'Test Post', :body =>
'Test body.')

end

def test_should_be_invalid_without_a_title
assert !Post.new(:title => nil, :body => 'Test
body.').valid?

end

def test_should_be_invalid_without_a_body
assert !Post.new(:title => 'Test Post', :body =>
nil).valid?

end

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

6

Some issues

What happens if we end up adding some
new field to the post model?

In order to avoid rewriting all our tests
every time this happens, we write a
helper function to create a new post,
such that we can override the fields as
needed.

Add the following to test/unit/post_test.rb at
the bottom:

private
def new_post(params = {})
Post.new({:title => 'Test Post', :body

=> 'Test body.'}.merge(params))
end

Now rewrite your tests to take advantage of this.
E.g.

def
test_should_be_valid_with_valid_attr
ibutes
assert_valid new_post

end

Try them again…

Another issue

Another minor issue is that since Rails
doesn’t have an ‘assert_invalid’
helper function, we have to resort to
‘assert !Model.valid?’. Let’s fix
this by adding ‘assert_invalid’.

test_helper
The right place to add this is test/test_helper.rb,

so that it is then available to all tests.

def assert_invalid(record, message=nil)
full_msg = build_message(message, "<?> is
valid.", record)
assert_block(full_msg) { !record.valid? }

end

Now rewrite (and rerun) your tests again to take
advantage of the new method.

Testing philosopy

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

7

Why write tests?
• So you don’t have to manually test your

application every time you make a change.
• So can you can be sure that a minor change

in this part of the code doesn’t break that part
over there.

• So that when you refactor (i.e. rip up and
rewrite) your code, you can be sure that the
new code has the same behavior as the old
code.

• So that you can CYA if making changes that
affect other people’s code (“It can’t be
broken; all your unit tests passed!”)

Test-driven development

In fact, some developers make the argument
that you should start your coding by writing
the tests.

• Figure out what the code is supposed to do
and write the tests to make sure it does that.

• Then write the code.
• When the tests pass, stop.
This forces you to think about what the code

should do before you write the code.

Reminders…

HAVE A GREAT
FALL BREAK!

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

