
1

Authentication/Authorization

INFO 2310:
Topics in Web Design and

Programming

Want to get a job or internship in
Information Science?

Is your resume ready for companies to see, or
would you like it to help you get that job?

The ISSA will be having a Resume Workshop
specifically tailored to Information Science
with Craig Jones from Cornell Career
Services

Monday, October 6th, 2008 @ 4:30 in Upson
205

We’ll have food and prizes!

Announcement

Last class for INFO 2310 will be
November 7, not October 31.

In our last episode…

Last time, we defined two new models for
users and comments.

We also started connecting the models,
and starting modifying the associated
views to start working more like a blog.

Still need to modify routes and controllers
(and views) to be more blog-like.

Nested resources
It really doesn’t make sense for

comments to be separate from posts;
we shouldn’t be able to create a
separate comment #4 via a URL
comments/4.

We really want every comment connected
to a post; the URLs for comments
should be posts/2/comments/4.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

We can do this by updating our routing
table to declare that comments are a
resource nested inside posts.

Get config/routes.rb. Remove the line
map.resources :comments

Modify the line
map.resources :posts

to
map.resources :posts,

:has_many => :comments

We can see what the new routes are by
typing ‘rake routes’.

We’d like someone to be able to add a
comment to a post.

In app/views/posts/show.html.erb, we can add
the line

<%= link_to "Add Comment",
new_post_comment_url(@post) %> |

before the links to Edit and Back.

This breaks when we actually try to enter
a new comment. A few things to fix:

• The view
• The comments controller

new.html.erb
Edit app/views/comments/new.html.erb to:

<h1>New comment</h1>
<% form_for :comment, :url => {:action => :create} do |f| %>

<%= f.error_messages %>
<p>

<%= f.label :body %>

<%= f.text_area :body %>

</p>
<p>

<%= f.submit "Create" %>
</p>

<% end %>

<%= link_to 'Back', post_url(@post) %>

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

Comments controller

For almost everything we want to do in
the comments controller, we’re going to
want the post associated with the
comment.

We can set up a call to make sure we get
it each time.

before_filter
At the top of the comments controller

(app/controllers/comments_controller.rb) we add

before_filter :grab_post

This gets called before each action. At the bottom we define this
method

private
def grab_post
@post = Post.find(params[:post_id])

end

Of course, there’s an “after_filter” as well, if we ever needed it.

Comments controller

In fact, we then should redefine all the
actions in the comments controller in
(app/controllers/comments.rb).

See code snippets for the entire file.

class CommentsController < ApplicationController
before_filter :grab_post

def index
@comments = Comment.find(:all)

end

def show
@comment = Comment.find(params[:id])

end

def new
@comment = Comment.new

end

def edit
@comment = @post.comments.find(params[:id])

end

def create
@comment =Comment.new(params[:comment])
if (@post.comments << @comment)

redirect_to post_url(@post)
else
render :action => :new

end
end

def update
@comment = @post.comments.find(params[:id])
if @comment.update_attributes(params[:comment])

redirect_to post_url(@post)
else
render :action => :edit
end

end

def destroy
comment = @post.comments.find(params[:id])
@post.comments.delete(comment)
redirect_to post_url(@post)

end

private
def grab_post
@post = Post.find(params[:post_id])

end

end

To dos..

There’s still plenty of work to do in fixing
up the views and controllers to get them
to do what you want…

But let’s go on to our next topic…

Authentication/Authorization

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

We will want to be able to:
• Allow users to log in (and keep their

password secure)
• Limit actions to users who have been

authorized to do them (e.g. maybe only
the author of a post can edit it).

We were bad

We created a user model with a
password, but we did something bad.
What was it?

Passwords in the clear
Right now our user password is in the database in

cleartext. This is a bad idea.

create_table :users do |t|
t.string :name
t.string :email
t.string :password

t.timestamps
end

Let’s change it so that we have a
encrypted password and a salt in our
DB; while we’re at it, let’s make sure the
email string is not null.

Create a migration (ruby
script/generate migration
crypt_password).

class CryptPassword < ActiveRecord::Migration
def self.up
remove_column :users, :password
add_column :users, :crypted_password, :string, :limit =>

256
add_column :users, :salt, :string
change_column :users, :email, :string, :null => false

end

def self.down
remove_column :users, :crypted_password
remove_column :users, :salt
add_column :users, :password, :string

end
end

This is in the code snippets file.

Adding an accessor
Since ‘password’ isn’t part of the User model

given by the DB anymore, we need to allow
for a way to get/set the unencrypted
password for a User instance (which won’t
get saved to the DB).

In the User model (app/models/user), add the
line
attr_accessor :password

(Remember from Lecture 1 on Ruby, this adds
a standard getter/setter to an object).

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

Model callbacks

So what do we do with a password to
make sure it is saved in encrypted
form?

We can ask a model to call a function
before_validation, before_save,
or after_create.

In this case, we want the password to be
encrypted before saving it.

Encryption
In app/models/users, add the line
before_save :encrypt_password, :unless =>
lambda {|u| u.password.blank?}

This will call a function ‘encrypt_password’.

What does the rest do? It passes in an ‘anonymous
function’ that takes as input a user and checks if its
password is blank, so we only do encryption on a
save in case we are saving the plaintext password.

Doing the encryption
We’re going to use a standard library, so at the very top of the User model (before

the Class statement), add the line require ‘digest/sha2’.

Then inside the model add

protected
def encrypt_password
self.salt ||= Digest:SHA256.hexdigest("--#{Time.now.to_s}-

-#{email}--")
self.crypted_password = encrypt(password)
self.password = nil

end

def encrypt(password)
Digest::SHA256.hexdigest("--#{salt}--#{password}--")

end

Logs

A good thing

Lots of details of the various events
occurring in your Rails application get
stored in a log; open up
blog/log/development.log and take a
look around.

A bad thing

Search for the SQL INSERT INTO
“users”.

What do you see?

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

6

Passwords in the clear
Processing UsersController#create (for 127.0.0.1 at 2008-09-24

22:34:12) [POST]
Session ID:
BAh7BzoMY3NyZl9pZCIlNjg5MzEzOGQ2ZWE5YmI5YjJmNGYwMDU2ODg0NWZh

ZGUiCmZsYXNoSUM6J0FjdGlvbkNvbnRyb2xsZXI6OkZsYXNoOjpGbGFzaEhh
c2h7AAY6CkB1c2VkewA=--7670d43a2c040709b6ab697f171cf692498841ce

Parameters: {"user"=>{"name"=>"David", "password"=>"MyPassword",
"email"=>"dpw@cs.cornell.edu"}, "commit"=>"Create",
"authenticity_token"=>"d92550adeea871720c84356fe3d26ffb54d62236",
"action"=>"create", "controller"=>"users"}

 [4;36;1mUser Create (0.000000) [0m [0;1mINSERT INTO "users"
("name", "updated_at", "password", "email", "created_at")
VALUES('David', '2008-09-25 02:34:12', 'MyPassword',
'dpw@cs.cornell.edu', '2008-09-25 02:34:12') [0m

Redirected to http://localhost:3000/users/1
Completed in 0.46800 (2 reqs/sec) | DB: 0.00000 (0%) | 302 Found

[http://localhost/users]

Not good for our users’ security…

A fix

We can fix this by adding a line to
app/controllers/application.rb; whatever is in
this file applies/is available to all controllers.

In this case we add
filter_parameter_logging :password

This removes from the log the value of any
parameter hash whose key has a substring of
‘password’ in it.

More caution
What happens if someone does an HTTP

PUT to /users/1 with params[:user][:salt]
set to ‘haxx0r!1’.

Yes, your salt gets reset and saved to the
new value.

Some protection

In the user model, add the line
attr_accessible :email, :name,
:password

Then when a hash passed in to the user model,
only these attributes are set; e.g.
User.new(params[:user])
only sets the :email, :name, :password from
the params[:user] hash.

Logging in

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://localhost:3000/users/1
http://localhost/users
http://www.pdfdesk.com

7

Logging in

We could create logging in/out actions in
our Users Controller, but instead we
take the perspective that

• Logging in = Creating a new session
• Logging out = Destroying a session
So let’s make a Sessions Controller (note

that there’s no corresponding Sessions
model!)

Making a sessions controller

We can create a sessions controller via
‘ruby script/generate
controller sessions’.

sessions_controller.rb
def new

unless User.count > 0
flash[:notice] = "Please create the first user"
redirect_to new_user_path

end
end

def create
self.current_user = User.authenticate(params[:email],
params[:password])
unless logged_in?
flash[:notice] = "Incorrect login/password"
render :action => 'new' and return

end
redirect_to(root_path)

end

def destroy
reset_session
flash[:notice] = "You've been logged out"
redirect_to(root_path)

end

We’re using some methods we didn’t
define in this controller
(User.authenticate, logged_in?). We’ll
come back to these.

In particular, we aren’t actually trying to find the user and set the
session variable in the controller; e.g. we didn’t try to write:

def create
user = User.find_by_email(params[:email])
unless user && user.crypted_password ==
user.encrypt(params[:password])
flash[:notice] = "Incorrect login/password“
render :action => 'new' and return

end
session[:user_id] = user.id
redirect_to(root_path)

end

Why not?

Skinny controllers, Fat models

More Rails philosophy: This kind of code
doesn’t belong in our controller.

Let the model figure out whether a user
meets the conditions of being logged in.
The controller is only supposed to figure
out what view to show you in that case.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

8

Implementing the methods
In the User model, add these methods:

def self.authenticate(email, password)
user = find_by_email(email)
user && user.authenticated_by?(password) ?
user : nil

end

def authenticated_by?(password)
encrypt(password) == crypted_password

end

To app/controllers/application.rb we add

def logged_in?
current_user != :false

end

But wait…

Where is the current user coming from? We
used this in the sessions controller too.

self.current_user =
User.authenticate(params[:email],
params[:password])

There’s no current_user instance variable.

Getting/setting the current user

To do this, we fake it by adding methods to the
app/controllers/application.rb.

def current_user=(user)
session[:user_id] = user.nil? ? nil : user.id
@current_user = user || :false

end

def current_user
@current_user ||= (login_from_session || :false)

end

protected
def login_from_session

self.current_user = User.find(session[:user_id]) if
session[:user_id]

end

Adding helpers to views

If we want to be able to use the logged_in?
and current_user methods in our views,
we can do this by declaring

helper_method :current_user,
:logged_in?

in app/controller/application.rb.

Allowing for logins

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

9

Routing logins
Let’s set up routes in config/routes.rb to allow for logins:

map.resources :sessions
map.login 'login', :controller =>
'sessions', :action => 'new‘

map.logout 'logout', :controller =>
'sessions', :action => 'destroy‘

We create named routes; these will match the URLs
/login and /logout, but will also let us refer to
login_path in our views.

An application view

Now we create an application layout in
app/views/layouts/application.html.erb
(and deleting the other layouts).

application.html.erb
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>Sample Blog<%= yield :title %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<p><% if logged_in? -%>
You are: <%= current_user.name %>.
<%= link_to('logout', logout_path) %> |
<%= link_to_unless_current('user mgmt', users_path) %> |

<% else %>
<%= link_to('login', login_path) %> |

<% end -%>
<%= link_to_unless_current('all posts', posts_path) %>
</p>
<hr />

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

Now give this all a try…

Want to get a job or internship in
Information Science?

Is your resume ready for companies to see, or
would you like it to help you get that job?

The ISSA will be having a Resume Workshop
specifically tailored to Information Science
with Craig Jones from Cornell Career
Services

Monday, October 6th, 2008 @ 4:30 in Upson
205

We’ll have food and prizes!

Announcement

Last class for INFO 2310 will be
November 7, not October 31.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
http://www.w3.org/1999/xhtml"
http://www.pdfdesk.com

