
1

Associations

INFO 2310:
Topics in Web Design and

Programming

Most of today

How do we add a related model to
already existing models?

But first…

Using an IDE
For your convenience, we’ve had Komodo

Edit 4.4 installed on all the lab
machines.

It makes navigating all your files a bit
easier.

For Mac users, everyone I know seems to
swear by TextMate.

To make a ‘project’ from your blog, do “File/New
Project From Template”.

Select the Ruby on Rails template (from
“Common”).

Name your project something (“blog”, maybe)
and select as its directory the current
directory for your blog.

Komodo Edit is smart enough to realize that all
the files in that directory belong to your
project.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

Some nice things

You can run some Rails commands from
inside the editor.

With your project open, look inside the
folder ‘Rails Tools’.

Try ‘Run/run server’.

Partials

Partials

With ‘partials’, we can create ‘partial’
views that can be rendered inside other
views. A bit like a PHP ‘include’.

The file name of a partial is prefixed with
an ‘_’.

Let’s try one…

Notice that app/views/posts/new.html.erb
and app/views/posts/edit.html.erb are
almost identical.

Let’s capture the common part in a partial.

_form.html.erb
Create a new file ‘app/views/posts/_form.html.erb’.

Copy the following from ‘app/views/posts/edit.html.erb’ into ‘_form’:

<% form_for(@post) do |f| %>
<%= f.error_messages %>
<p>

<%= f.label :title %>

<%= f.text_field :title %>

</p>
<p>
<%= f.label :body %>

<%= f.text_area :body %>

</p>
<p>
<%= f.submit "Create" %>
</p>
<% end %>

Now edit blog/app/views/posts/edit.html.erb
by replacing the removed code with:

<%= render :partial => ‘form’ %>

and the same for
blog/app/views/posts/new.html.erb.

Now try the blog…

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

3

Problem…

The submit button says ‘Create’ for both
entering a new entry and editing an old
one.

We can solve this by passing in local
variables to each…

Edits
_form.html.erb; change f.submit line to
<%= f.submit action %>

new.html.erb; change render line to
<%= render :partial => 'form', :locals =>
{:action => 'Create'} %>

edit.html.erb; change render line to
<%= render :partial => 'form', :locals =>
{:action => 'Update'} %>

Adding a model
Now we’ll get down to the business of adding

another model to our site. We need to:
• Create the model and any associations with

other models.
• Create the associated controller.
• Create the associated views.
• Update the database.
• Update the routes.

Scaffolding

We can get a lot of this done via scaffolding;
this will set up the files to create the
model/controllers/views, just like we did last
time for the posts model.

Go to your blog directory, and enter “ruby
script/generate scaffold comment
body:text post_id:integer”.

(Through Komodo: Ruby
Tools/Generate/scaffold).

Adding a table

Rails lets us modify our DB through
migrations: Ruby code that explains the
changes to make to our DB and then
how to undo them.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

The migration

This creates a file in db/migrate called
2008xxxxxxx_create_comments.rb.
You’ll see another file in that directory,
2008xxxxx_create_posts.rb, which
created the posts DB.

create_comments
class CreateComments < ActiveRecord::Migration
def self.up
create_table :comments do |t|

t.integer :post_id
t.text :body

t.timestamps
end

def self.down
drop_table :comments

end
end

Migrating

To actually get this to run and create the table,
we need to run ‘rake db:migrate’.

(Through Komodo: Rails
Tools/Migrate/db:migrate).

We can use migrations to move back and forth
between various versions of the DB if
needed.

Users

OK, let’s scaffold out another model (and views
and controllers) for users. Users will have a
name, password, and email, all strings.

You do it, this time…

Be sure to run the migration to create the table.

Associations
We now want to be able to tell the models

about the various connections that they
have with each other.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

5

ER Diagram

We can have these relationships reflected
in the models by adding information to
the model files.

Open up the post model in app/models/post.rb. We can
tell the post about associated comments.

class Post < ActiveRecord::Base
has_many :comments
validates_presence_of :title, :body
validates_format_of :title, :with =>
/^[\w\d]+$/

end

Because each comment has a post_id, Rails can
automatically associate each comment with a
particular post.

We can also tell the model how to associate itself with
another model (if we don’t follow the defaults).

class Post < ActiveRecord::Base
has_many :comments
belongs_to :author, :class_name =>

"User", :foreign_key => "user_id"
validates_presence_of :title, :body
validates_format_of :title, :with =>

/^[\w\d]+$/
end

Let’s now enter the associations for other
models as well.

class Comment < ActiveRecord::Base
belongs_to :post

end

class User < ActiveRecord::Base
has_many :posts

end

The association of the Post model with the User model
isn’t going to work quite yet; why not?

class Post < ActiveRecord::Base
has_many :comments
belongs_to :author, :class_name =>

"User", :foreign_key => "user_id"
validates_presence_of :title, :body
validates_format_of :title, :with =>

/^[\w\d]+$/
end

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

6

We need to add a column to the posts DB
that tells us the user_id of the author of
the post.

We can do this through a migration. Type
‘ruby script/generate
migration add_user_id’ (or Rails
Tools/Generators/migration in Komodo).

In db/migrations/2008xxxx_add_user_id, create a migration to add a
column to the posts DB as follows:

class AddUserId < ActiveRecord::Migration
def self.up

add_column :posts, :user_id, :integer
end

def self.down
remove_column :posts, :user_id

end
end

Go ahead and run the migration (you do remember how to do that, right?)

Now you can go ahead and add
comments and users by starting up the
web server (ruby script/server)
and navigating to
http://localhost:3000/users and
http://localhost:3000/comments.

This doesn’t let us enter/edit the user_ids
associated with the posts because the
associated views with posts are still the
same. We can fix this by updating the
views.

In app/views/posts/_form.html.erb, add two lines to allow the user id to be input/edited.

<% form_for(@post) do |f| %>
<%= f.error_messages %>

<p>
<%= f.label :title %>

<%= f.text_field :title %>

</p>
<p>

<%= f.label :body %>

<%= f.text_area :body %>

</p>
<p>

<%= f.label :user_id %>

<%= f.text_field :user_id %>

<p>
<%= f.submit action %>

</p>
<% end %>

Go ahead and enter some users, some comments and posts associated with those users.

Now we can see how the associations work by starting
up the console (ruby script/console).

@post = Post.find(:first)
@user = User.find(:first)
@post.comments
@user.posts.size
@post.author
@user.posts.create(:title => “New post
through association”, :body => “It
knows the user who made it!”)

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://localhost:3000/usersand
http://localhost:3000/comments.
http://www.pdfdesk.com

7

Partial collections
This is a little unsatisfying so far. Every

post has an associated set of
comments, but we’re entering them and
editing them as independent entities
linked by a post_id.

We like it to work like a real blog.

One idea: we want the URL posts/3 to list
all the comments associated with post
#3.

We can do this by editing the associated
view and having it display the
associated comments
(@post.comments).

We could loop through these with a for loop, but instead
let’s use partials again.

Create a file app/views/comments/_comment.html.erb.

Put in it something like this:

<div class="comment">
<h5><%= comment.created_at.to_formatted_s(:long) %></h5>
<p><%=h comment.body %></p>

</div>

Now we can render all the comments by
adding this line to
app/views/posts/show.html.erb.

<%= render :partial =>
“/comments/comment", :collection =>
@post.comments %>

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

