
1

Rails and routing

INFO 2310:
Topics in Web Design and

Programming

Reminder

No class next Friday 9/19
We’re back 9/26

Today’s topics

• Model validation
– How can we make sure people enter stuff we

want?
• More about views and controllers

– How does Rails decide what pages to show?
– RESTful design

• Embedded Ruby (erb)
– How can we use Ruby in our HTML?

Model validation

Remember the CD catalog from INFO
230? You can’t trust user input. So
how do we deal with that in Rails?

Model validation

It turns out to be particularly simple in Rails.

Open up your Post model file
(blog/app/models/post.rb). Add the line:

validates_presence_of :title, :body

to the Post model.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

2

Now try it…

Fire up the webserver (ruby
script/server from within your blog
directory) and open up a browser (to
http://localhost:3000/posts).

Try entering/editing a post to have a blank
title and/or body.

We can be slightly more sophisticated.
Add another line to the Post model:

validates_format_of :title, :with =>
/^[\w\d]+$/

Now try to see what happens…

Lots of possibilities…

validates_uniqueness_of
validates_numericality_of
validate_on_create :methodname
validate_on_update :methodname
…

Errors?
How are the errors getting displayed?

Each ActiveRecord object has a list of errors (e.g.
@post.errors).

If you look at
blog/app/views/post/new.erb.html
blog/app/views/post/edit.erb.html

you’ll see a method that prints out the errors in this list:
<%= f.error_messages %>

More about views and
controllers

From last time: MVC

Recall from last time: Rails uses the MVC
(model-view-controller) pattern of software
architecture

• Model: Objects holding data + methods for
operating on them.

• Controllers: Takes requests from user
interface and decide which views to render.

• Views: The HTML + Ruby that displays data
from the model, gets input from the user.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://localhost:3000/posts
http://www.pdfdesk.com

3

From last time: Models

In working on our blog, we created a
model ‘Posts’ with titles and bodies. We
saw how we could manipulate data in
the model.

This time: Views and controllers

How does Rails take a URL and decide
what to show you?

Routes.rb

Everything starts in the routes.rb file.

Open up blog/config/routes.rb.

Routes.rb

ActionController::Routing::Routes.draw do
|map|
map.resources :posts
map.connect ':controller/:action/:id'
map.connect

':controller/:action/:id.:format’
end

Figuring a route
Each map.something command designed to take a URL, parse it, and

direct it to the appropriate controller and method (action).

Route is decided on by first matching URL in routes.rb.

E.g. For our current mapping,
/users/show/1 would match

map.connect ‘:controller/:action/:id’
with params = { :controller => “users”,

:action => “show”,
:id => 1 }

Would call on users_controller.rb and look for ‘show’ method. (if we
had a users_controller). ‘show’ can access params[:id].

Let’s add some routes
First, let’s add a route for the root, so we don’t get the

default Rails screen.

Add
map.root :controller => ‘posts’, :action
=> ‘index’

to routes.rb, just before the map.connect
:controller/:action/:index line.

Also delete blog/public/index.html (or rename it).

Try it!

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

4

Another route
Let’s allow us to look up blog posts by date.

As the first routing line in routes.rb (after ActionController…), add
map.connect ‘posts/bydate/:year/:month/:day’,

:controller => “posts”,
:action => “show_date”,
:requirements => { :year => /(19|20)\d\d/,

:month => /[01]?\d/,
:day => /[0-3]?\d/ },

:month => nil,
:day => nil

(Note: for reasons we’ll discuss in a minute, this isn’t something we would
really want to do given how posts current works).

Adding an action to a controller

Now open up blog/app/controller/posts_controller and add the
following method at the bottom (just before the ‘end’).

def show_date
@posts = Post.find(:all)
@posts = @posts.select {|x| x.created_at.year
== params[:year].to_i}
@posts = @posts.select {|x| x.created_at.month
== params[:month].to_i} if params[:month]
@posts = @posts.select {|x| x.created_at.day ==
params[:day].to_i} if params[:day]
render(:action => :index)

end

Try it!

Try entering corresponding URLs into the
browser.

http://localhost:3000/posts/bydate/2008
http://localhost:3000/posts/bydate/2008/09/

05

What is happening?

Views

Each controller/action may have an associated
layout/view.

The ‘posts’ controller has an associated layout
in app/layouts/posts.html.erb.

The views associated with the actions of the
‘posts’ controllers are in app/views/post/…
(ones for ‘index’, ‘edit’, ‘new’, and ‘show’).

Views

When an action is called, the corresponding
view is rendered (unless another render or a
‘redirect’ is called).

The view is output within a layout;
posts.html.erb in this case.

If the corresponding layout does not exist,
application.html.erb is used instead (useful if
you want one layout for many controllers).

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://localhost:3000/posts/bydate/2008
http://www.pdfdesk.com

5

In our case…

‘show_date’ asks to render ‘index’. So
app/views/posts/index.html.erb is
rendered in the context of the layout
app/layouts/posts.html.erb (with the
@posts variable set as given in
‘show_date’).

Posts layout
!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>My Blog <%= @title %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>
<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

Useful tricks
Since layouts are evaluated after the view, they

can use variables set in the view.

Try this:
in app/views/posts/show.html.erb add the line

<% @title = ": " + @post.title %>

somewhere.

Then in app/layouts/post.html.erb, change
the <title> tag to

<title>My Blog <%=h @title
%></title>

Try it!

REST
But in fact, the only route related to posts

in routes.rb was

map.resources :posts

How does this manage to do everything
that it does?

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
http://www.w3.org/1999/xhtml"
http://www.pdfdesk.com

6

REST
REST = Representational State Transfer

Basic ideas:
• All interactions between client and server handled by

a small number of ‘verbs’ applied to a larger number
of well-defined ‘nouns’ or ‘resources’. ‘Resources’
can have multiple ‘representations’. Long-term state
maintained by the ‘resources’.

• In our case:
– ‘verbs’ are HTTP methods (GET, POST, PUT, DELETE)
– ‘nouns’ are URLs (e.g. /posts/1).
– ‘representations’ are formats (HTML, XML, RSS, JSON, etc.)

REST cont.
Why is this useful?
• Useful for networking components to know when they

can cache responses.
• Rather than using the URL to indicate the action (e.g.

‘/posts/get_article/1’), have standard action (HTTP
GET) applied to a resource (e.g. ‘posts/1’).

• Generalizes to other resources (e.g. we know what
happes if we do an HTTP GET for ‘/users/1’).

• But at some level, I don’t get the fuss.

REST in Rails

Rails is set up for ‘RESTful’ applications.

Can see the routes created by
“map.resources :posts” by typing ‘rake
routes’.

Delete post :iddestroy/posts/:idDELETE

Update post :id
using info from
request

update/posts/:idPUT

Make new post
(form input)

new/posts/newGET
Edit post :idedit/posts/:id/editGET

Make new post
using info from
request

create/postsPOST

Show post :idshow/posts/:idGET

Lists all postsindex/postsGET
ActionURLHTTP method

posts_controller.rb
We can see the actions in the controller:

def index
@posts = Post.find(:all)
respond_to do |format|

format.html # index.html.erb
format.xml { render :xml => @posts }

end
end

def show
@post = Post.find(params[:id])
respond_to do |format|

format.html # show.html.erb
format.xml { render :xml => @post }

end
end

XML

Note that there is built-in support for an XML
representation; try browsing
‘http://localhost:3000/posts.xml’.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com
http://localhost:3000/posts.xml�.

7

ERB
Now some of the .erb files make more sense. index.html.erb:

<% for post in @posts %>
<tr>
<td><%=h post.title %></td>
<td><%=h post.body %></td>
<td><%= link_to 'Show', post %></td>
<td><%= link_to 'Edit', edit_post_path(post) %></td>
<td><%= link_to 'Destroy', post, :confirm => 'Are you sure?', :method =>

:delete %></td> </tr>
<% end %></table>

<%= link_to 'New post', new_post_path %>

ERB

Any Ruby inside “<% … %>” gets executed.
E.g. <% for post in @posts %>

Any Ruby inside “<%= … %>” gets executed,
the result turned into a string, and displayed.
E.g. <%= h post.title %>
‘h’ is a method that displays special
characters correctly in HTML; like PHP
htmlentities().

ERB
‘link_to’ a method for creating links.

edit_post_path(post), new_post_path methods
automatically created to return URLs to the ‘edit’ and
‘new’ actions of the posts_controller.

Note in ‘Destroy’ link we have to specify the HTTP
method ‘:delete’.

<%= link_to 'Destroy', post, :confirm =>
'Are you sure?', :method => :delete %>

Reminder

No class next Friday 9/19
We’re back 9/26

What happens when we add another
model? How can we link two models?

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

http://www.pdfdesk.com

