
1

Course Overview and
Intro to Rubyy

INFO 2310:
Topics in Web Design and

Programming

INFO 2310

We’ll be covering the web “framework”
Ruby on Rails.

Ruby is a programming language (like y p g g g g (
Java, or PHP, but stranger).

A “framework” is a library of files that
makes it easy for you to create web
applications (at least if you follow its
system).

Why Rails?
• A popular framework
• Has ‘thought leadership’• Has thought leadership
• ISSA/Dean Strelau were enthusiastic
• Dave Patterson is teaching it at

Berkeley

Course prerequisites

INFO 2300 (230) or equivalent
knowledge:

• HTML/CSS/PHP
• Database backends for webpages
Check with me if you’re not sure.
Helpful if you have done some object-

oriented programming elsewhere (but
not necessary)

Course structure

We’ll meet for 10 weeks, starting today,
ending October 31.

No class on September 19No class on September 19.

Course outline
We’ll be following a course outline created by Dean Strelau; see

http://code.strelau.net/curails. The course outline is:

1. Intro to Ruby (today)
2. Getting Started with Rails
3. Rails Basics3 a s as cs
4. Associations
5. Authentication/Authorization
6. Testing
7. Plugins
8. JavaScript/Ajax
9. Photo Gallery
10. Deployment and Scaling

Through the course of these lectures, we’ll gradually be building a blog
website. In Lecture 9, we’ll redo Project 3 from 230 and create a
Photo Gallery from scratch in one lecture.

2

Course caveats
I am not a Ruby or Rails expert. In some sense, we will

all be learning this stuff together.

So why take a course on Rails from me instead of one y
of the gajillion tutorials online?

• I will try to make it as least as good as any of the
tutorials.

• Phil Adams is our expert TA.
• It’s more fun to help each other by learning in a group

than by learning solo.

Course requirements

Given the caveats, the requirements are
light: attendance + the two websites
(blog, photo gallery).(g, p g y)

E.g. an A will be given if you show up to 8
of the 10 lectures and complete (with
some attention to style) the two
projects.

Course books/materials
No books required. The standard reference is:
“Agile Web Development with Rails” by Thomas and

Heinemeier Hansson.
Slightly out of date (since it references Rails 1.2). New g y ()

third edition (covering Rails 2) coming out in October.

I’m also looking at
“Beginning Rails: From Novice to Professional” by

Hardy and Carneiro, Apress
(but this is also Rails 1.2)

Course books/materials
While the machines in this cluster have

everything we need to do Rails, you will
need someplace to store your own files
(starting next time).

Two options:
1. Bring a flash drive (I’ll bring some extras for

those who don’t have one).
2. Install Rails on a laptop and bring it along

(see www.rubyonrails.org for instructions,
but you’ll need to install a DB as well –
SQLite or MySQL).

Course resources

Course webpage at
www.orie.cornell.edu/~dpw/info2310.

Course discussion group at
forums.cit.cornell.edu (INFO 2310)

Why not take a minute to register?

Ruby

3

Ruby is a dynamic, object-oriented,
programming language.

We’ll need to be comfortable with the
basics of it in order to use Rails.

Fire it up

Ruby is ‘interpreted’, not ‘compiled’, so we
can work with it right away.

Get a command line, and type ‘irb’.
(Start -> Run… “cmd”)

Your first Ruby program

puts “Hello World!”

prints “Hello World!” and returns a… prints Hello World! and returns a
value (nil).

Remember Objects
Objects are collections of data (attributes) and associated functions

(methods).

In Ruby, everything is an object. And most objects have methods.

Numbers are objects:Numbers are objects:
2.next
Strings are objects:
“Hello world!”.length
Nil is an object:
nil.nil?

To get a list of all the methods of an object, use object.methods; e.g.
3.methods
“Hi”.methods

Conditionals
Yep, Ruby has ‘em too.

count = 5
if count > 10

count += 5
“ i !”puts “You win!”

else
puts “Loser.”

end

Notes:
• No () around condition
• No { } around code blocks; instead, defined by positions of “else” and

“end”
• Indentations are not significant (though good style; usually two spaces)
• Line breaks are significant!

Other options
unless count > 10
puts “Your count is too low.”

end

puts “You win!” if count > 10
puts “You win!” unless count <= 10

In the latter two, ‘if’/‘unless’ are statement
modifiers.

4

Printing
As in PHP, single vs. double quotes are

significant.

puts “Your current count isputs Your current count is
#{count}.”

puts ‘Your current count is
#{count}.’

Within double quotes, the #{variable}
expression prints out the value of variable.

True, false, and nil

Anything except the objects ‘nil’ and
‘false’ are true (even 0).

0.nil?

nil.to_i

false.to_s
“”.nil?

Arrays

Ruby has your standard indexed arrays

veggies = [‘spinach’, ‘carrot’]gg p
myveggie = veggies[0]
things = [231, “wet dog”, 4.2]
things.push(“z”)
things << myveggie
puts things

Hashes
Ruby also has hashes, which we called associative

arrays in PHP.

fruit = {‘apple’ => ‘red’, ‘banana’ =>
‘ ello ’}‘yellow’}

fruit[‘apple’]
oddhash = {3 => ‘three’, ‘three’ => 4}
newfruit = {:kiwi => “green”}
newfruit[:kiwi]

:kiwi is a symbol; something like a string, but immutable.
They’re frequently used as the keys for hashes.

Where things start getting
really strangey g

Blocks and iteration

Ruby has ‘for’ loops like other languages

myarray = [10, 23, 17, 39]y y
double = []
for i in 0…myarray.length
double[i] = 2*myarray[i]

end
puts double

5

No ‘for’
But it’s considered bad form to use them.

Instead
double = myarray map {|i| 2*i}double myarray.map {|i| 2 i}

or equivalently
double = myarray.map do |i|

2*i
end

What is going on here?

{|i| 2*i}
and
do |i|

2*i
ende d
are blocks. Can think of these as functions with no names, where |i|

is the argument. Usually use the former for single lines blocks,
latter for multiline blocks.

The array method “map” takes a block as an input, returns the
array that is the result of applying the block to each element of
the array.

[10, 23, 17, 39].map {|i| 2*i }

Get used to it

This style of code is used all over in Ruby.

[“this” “that” “those”] each[this , that , those].each
{|word| print word, “ “}

3.upto(6) {|x| puts “#{x}”}

5.times { print “*” }

Examples

Let’s add up the even numbers from 1 to 100.
sum = 0
(1..100).each {|x| sum += x if (x (.. 00).eac {| | su (
% 2 == 0)}

sum = 0
(1..100).select {|x| x % 2 ==
0}.each {|i| sum += i}

(1..100).select {|x| x % 2 ==
0}.inject(0) {|sum, i| sum + i}

array.inject(x) sets first argument initially to
x, afterwards to result of block, second
argument to each array element.

Methods

6

Since everything is an object, we define
methods, not functions…

def hello
puts “Hello”

end

hello

Methods can have arguments.

def hello(name)def hello(name)
puts “Hello, #{name}!”

end

hello(“Baxter”)

Useful to have the last argument be a hash; allows for a list of named arguments.

def hello(name, params)
if params[:language]
if params[:language] == :Spanish
puts “Hola, #{name}!”

elsif params[:language] == :Frenchelsif params[:language] :French
puts “Bonjour, #{name}!”

end
else
puts “Hello, #{name}!”

end
end

hello(“Mariano”, {:language => :Spanish})
hello(“Mariano”, :language => :Spanish)
hello “Mariano”, :language => :Spanish

Don’t need the {} for the hash, or even the () for the method call – good Ruby style, but
sometimes omitted in Rails.

Sample Rails call like this
has_one :parent, :class_name => "Thread",
:foreign_key => "parent_thread_id"

Other method facts worth knowing:
• return value is last value in method
• methods that alter their arguments end in ‘!’ (by

convention)
• methods that return true/false end in ‘?’; e.g. not
isChunky or is_Chunky but chunky?

Classes
We define objects using ‘class’.

7

class Post
def title=(value)
@title = value

end

def title
@title

end

def body=(value)
@body = value

end

def body
@body@body

end

def display_post
puts “Title:”, @title
print “Body:”, @body

end
end

mypost = Post.new
mypost.title = “My first post!”
mypost.body = “This is my first post!”
mypost.display_post
mypost.title

Getters/Setters
@title, @post are instance variables. Each instance of

the class ‘Post’ has a copy of them.

The methods ‘title’ and ‘post’ are called ‘getters’; they p g ; y
‘get’ the value of the attributes ‘@title’ and ‘@post’.

The methods ‘title=‘ and ‘post=‘ are called ‘setters’; they
‘set’ the value of the attributes ‘@title’ and ‘@post’.

Defaults
Default getters/setters can be generated by using

attr_accessor.

class Post
attr_accessor :title, :post_

def display_post
puts “Title:”, @title
print “Body:”, @body

end
end

initialize
Can have an initialize method that gets called when a new instance of the object is created.

class Post
attr_accessor :title, :body

def initialize(args = {})
@title = args[:title] if args[:title]@title args[:title] if args[:title]
@body = args[:body] if args[:body]

end

def display_post
puts “Title:”, @title
puts “Body:”, @body

end
end

post2 = Post.new(:title => “Another post!”)
post2.title
post2.body

Object inheritance

PHP has this, but we didn’t discuss it in
230.

class Person
attr_accessor :name
def initialize(args = {})

raise "Every Person must have a name" unless
args[:name]
self.name = args[:name]

end
end

class Cornellian < Person
attr_accessor :net_id
attr_accessor :email
def initialize(args = {})

super(args)
raise "Every Cornellian must have a NetID" unless

args[:net_id]
self.net_id = args[:net_id]

end
def email

@email || "#{net_id}@cornell.edu"
end

end

8

Some new things…
class Cornellian < Person

A ‘Cornellian’ is a kind of ‘Person’; has all the same
attributes/methods as ‘Person’, plus whatever we
addadd.

We say that
• ‘Cornellian’s inherits from ‘Person’s
• ‘Cornellian’ extends ‘Person’
• ‘Cornellian’ is a child class of ‘Person’ (or ‘Person’ is

the parent class).
• ‘Cornellian’ is a subclass of ‘Person’ (or ‘Person’ is

the superclass).

super

def initialize(args = {})

super(args)

‘super’ calls the same method in the
parent class.

self

self.name = args[:name]

self like this from PHP/Java Refersself like this from PHP/Java. Refers
to the current instance of the object.

raise
raise "Every Person must have a name"
unless args[:name]

‘raise’ raises an error.

irb(main):021:0> dean = Person.new
RuntimeError: Every Person must have a
name

from (irb):4:in `initialize'
from (irb):21:in `new'
from (irb):21

def email
@email || “#{net_id}@cornell.edu"

end

If @email is not nil, @email is returned, otherwise the
Netid address is returned.

Note that this overwrites the default getter for @email.

Try it…

Create an instance of Cornellian with
name “Dean” and netID “tds28”. What
happens if you omit one or the other?pp y

What’s Dean’s email? Set it to
strelau@cornell.edu. Now what is it?

Can you access Dean’s name? Why?

9

Learning More
• Ruby language reference is at

www.rubybrain.com.
• An early edition of the standard Ruby book is

online at
htt // b t l /b k/http://www.rubycentral.com/book/.

• An intro to programming using Ruby:
http://pine.fm/LearnToProgram/?Chapte
r=00.

• A really whacked out intro to
programming using Ruby:
http://poignantguide.net/ruby/.

A haxx0r challenge

Write a RomanNum class such that you
can set the value of an instance either
by giving a Roman numeral (e.g. ‘XXIV’) y g g (g)
or a number (e.g. 24), and can get the
value in either form.

Reminders…

Sign up for the class forum
Either bring a flash drive or a laptop with Rails

installed.

